


Learning OpenCV 4 Computer
Vision with Python 3
Third Edition

Get to grips with tools, techniques, and algorithms for
computer vision and machine learning

Joseph Howse
Joe Minichino

BIRMINGHAM - MUMBAI



Learning OpenCV 4 Computer Vision with
Python 3
Third Edition
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Digvijay Bagul
Senior Editor: Rohit Singh
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Coordinator: Shraddha Falebhai

First published: April 2013
Second edition: September 2015
Third edition: February 2020

Production reference: 1190220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78953-161-9

www.packt.com

https://www.packtpub.com/


 

 

 

 

 

 

 

 

  

I dedicate my work to Sam, Jan, Bob, Bunny, and the cats, who have been my lifelong guides
and companions.

– Joseph Howse



 

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks. 

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com


Contributors

About the authors
Joseph Howse lives in a Canadian fishing village with four cats; the cats like fish, but they
prefer chicken.

Joseph provides computer vision expertise through his company, Nummist Media. His
books include OpenCV 4 for Secret Agents, Learning OpenCV 4 Computer Vision with Python 3,
OpenCV 3 Blueprints, Android Application Programming with OpenCV 3, iOS Application
Development with OpenCV 3, and Python Game Programming by Example, published by Packt.

I want to thank all the people who have shaped this book's three editions: the readers, my
coauthor Joe Minichino, and the teams of editors, technical reviewers, and marketers.
Above all, my family makes my work possible and I dedicate this book to them.

Joe Minichino is an R&D labs engineer at Teamwork. He is a passionate programmer who
is immensely curious about programming languages and technologies and constantly
experimenting with them. Born and raised in Varese, Lombardy, Italy, and coming from a
humanistic background in philosophy (at Milan's Università Statale), Joe has lived in Cork,
Ireland, since 2004. There, he became a computer science graduate at the Cork Institute of
Technology.



About the reviewer
Sri Manikanta Palakollu is an undergraduate student pursuing his bachelor's degree in
computer science and engineering at SICET under JNTUH. He is a founder of the Open
Stack Developer Community in his college. He started his journey as a competitive
programmer. He loves to solve problems related to the data science field. His interests
include data science, app development, web development, cyber security, and technical
writing. He has published many articles on data science, machine learning, programming,
and cyber security with publications such as Hacker Noon, freeCodeCamp, Towards Data
Science, and DDI.

I would like to thank God Almighty for giving me the strength, knowledge, ability, and
opportunity to review this book. I would like to express my deepest gratitude to my father,
Basaveswara Rao, and mother, Vijaya Lakshmi, for everything that they have done for me.
Special thanks to my friends and well-wishers for supporting me and to Packt Publishing
for giving me the opportunity to review this book.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com


Table of Contents
Preface 1

Chapter 1: Setting Up OpenCV 7
Technical requirements 8
What's new in OpenCV 4 9
Choosing and using the right setup tools 9

Installation on Windows 10
Using a ready-made OpenCV package 11
Building OpenCV from source 11

Installation on macOS 15
Using Homebrew with ready-made packages 15
Using Homebrew with your own custom packages 17

Installation on Debian, Ubuntu, Linux Mint, and similar systems 17
Using a ready-made OpenCV package 18
Building OpenCV from source 19

Installation on other Unix-like systems 21
Running samples 22
Finding documentation, help, and updates 23
Summary 24

Chapter 2: Handling Files, Cameras, and GUIs 25
Technical requirements 26
Basic I/O scripts 26

Reading/writing an image file 26
Converting between an image and raw bytes 29
Accessing image data with numpy.array 32
Reading/writing a video file 34
Capturing camera frames 36
Displaying an image in a window 38
Displaying camera frames in a window 39

Project Cameo (face tracking and image manipulation) 41
Cameo – an object-oriented design 42

Abstracting a video stream with managers.CaptureManager 42
Abstracting a window and keyboard with managers.WindowManager 48
Applying everything with cameo.Cameo 49

Summary 52

Chapter 3: Processing Images with OpenCV 53
Technical requirements 53
Converting images between different color models 54

Light is not paint 55



Table of Contents

[ ii ]

Exploring the Fourier transform 55
HPFs and LPFs 56

Creating modules 60
Edge detection 60
Custom kernels – getting convoluted 62
Modifying the application 64
Edge detection with Canny 66
Contour detection 68

Bounding box, minimum area rectangle, and minimum enclosing circle 69
Convex contours and the Douglas-Peucker algorithm 73

Detecting lines, circles, and other shapes 75
Detecting lines 76
Detecting circles 77
Detecting other shapes 78

Summary 79

Chapter 4: Depth Estimation and Segmentation 80
Technical requirements 81
Creating modules 81
Capturing frames from a depth camera 82
Converting 10-bit images to 8-bit 84
Creating a mask from a disparity map 87
Modifying the application 88
Depth estimation with a normal camera 91
Foreground detection with the GrabCut algorithm 98
Image segmentation with the Watershed algorithm 102
Summary 105

Chapter 5: Detecting and Recognizing Faces 106
Technical requirements 107
Conceptualizing Haar cascades 107
Getting Haar cascade data 108
Using OpenCV to perform face detection 109

Performing face detection on a still image 110
Performing face detection on a video 112
Performing face recognition 116

Generating the data for face recognition 116
Recognizing faces 118
Loading the training data for face recognition 119
Performing face recognition with Eigenfaces 121
Performing face recognition with Fisherfaces 123
Performing face recognition with LBPH 124
Discarding results based on the confidence score 124

Swapping faces in the infrared 125
Modifying the application's loop 126



Table of Contents

[ iii ]

Masking a copy operation 129
Summary 132

Chapter 6: Retrieving Images and Searching Using Image Descriptors 133
Technical requirements 134
Understanding types of feature detection and matching 134

Defining features 135
Detecting Harris corners 135
Detecting DoG features and extracting SIFT descriptors 138

Anatomy of a keypoint 141
Detecting Fast Hessian features and extracting SURF descriptors 141
Using ORB with FAST features and BRIEF descriptors 143

FAST 144
BRIEF 145
Brute-force matching 145
Matching a logo in two images 146

Filtering matches using K-Nearest Neighbors and the ratio test 149
Matching with FLANN 153
Performing homography with FLANN-based matches 158
A sample application – tattoo forensics 162

Saving image descriptors to file 162
Scanning for matches 164

Summary 167

Chapter 7: Building Custom Object Detectors 168
Technical requirements 169
Understanding HOG descriptors 169

Visualizing HOG 170
Using HOG to describe regions of an image 172

Understanding NMS 173
Understanding SVMs 174
Detecting people with HOG descriptors 175
Creating and training an object detector 178

Understanding BoW 179
Applying BoW to computer vision 180

k-means clustering 181
Detecting cars 181

Combining an SVM with a sliding window 190
Detecting a car in a scene 191
Saving and loading a trained SVM 199

Summary 200

Chapter 8: Tracking Objects 201
Technical requirements 202
Detecting moving objects with background subtraction 202



Table of Contents

[ iv ]

Implementing a basic background subtractor 204
Using a MOG background subtractor 207
Using a KNN background subtractor 212
Using GMG and other background subtractors 214

Tracking colorful objects using MeanShift and CamShift 217
Planning our MeanShift sample 218
Calculating and back-projecting color histograms 219

Understanding the parameters of cv2.calcHist 222
Understanding the parameters of cv2.calcBackProject 223

Implementing the MeanShift example 224
Using CamShift 227

Finding trends in motion using the Kalman filter 228
Understanding the predict and update phases 229
Tracking a mouse cursor 230

Tracking pedestrians 233
Planning the flow of the application 233
Comparing the object-oriented and functional paradigms 234
Implementing the Pedestrian class 236
Implementing the main function 238
Considering the next steps 242

Summary 243

Chapter 9: Camera Models and Augmented Reality 244
Technical requirements 245
Understanding 3D image tracking and augmented reality 245

Understanding camera and lens parameters 248
Understanding cv2.solvePnPRansac 253

Implementing the demo application 256
Importing modules 256
Performing grayscale conversion 257
Performing 2D-to-3D spatial conversions 258
Implementing the application class 260

Initializing the tracker 261
Implementing the main loop 269
Tracking the image in 3D 270
Initializing and applying the Kalman filter 274
Drawing the tracking results and masking the tracked object 278

Running and testing the application 281
Improving the 3D tracking algorithm 286
Summary 287

Chapter 10: Introduction to Neural Networks with OpenCV 288
Technical requirements 289
Understanding ANNs 290

Understanding neurons and perceptrons 292
Understanding the layers of a neural network 293



Table of Contents

[ v ]

Choosing the size of the input layer 294
Choosing the size of the output layer 294
Choosing the size of the hidden layer 294

Training a basic ANN in OpenCV 295
Training an ANN classifier in multiple epochs 298
Recognizing handwritten digits with an ANN 303

Understanding the MNIST database of handwritten digits 303
Choosing training parameters for the MNIST database 305
Implementing a module to train the ANN 305
Implementing a minimal test module 310
Implementing the main module 310
Trying to improve the ANN's training 316
Finding other potential applications 318

Using DNNs from other frameworks in OpenCV 319
Detecting and classifying objects with third-party DNNs 320
Detecting and classifying faces with third-party DNNs 324
Summary 331

Appendix A: Bending Color Space with the Curves Filter 333

Other Book You May Enjoy 343

Index 345



Preface
Now in its third edition, this is the original book on OpenCV's Python bindings. Readers
will learn a great range of techniques and algorithms, from the classics to the state-of-the-
art, and from geometry to machine learning. All of this is in aid of solving practical
computer vision problems in well-built applications. Using OpenCV 4 and Python 3, we
adopt an approach that is accessible to computer vision novices, yet also informative for
experts who want to expand and update their skills.

We start with an introduction to OpenCV 4 and explain how to set it up with Python 3 on
various platforms. Next, you'll learn how to perform basic operations such as reading,
writing, manipulating, and displaying still images, videos, and camera feeds. You'll learn
about image processing and video analysis, along with depth estimation and segmentation,
and you'll gain practice by building a simple GUI application. Next, you'll tackle two
popular problems: face detection and face recognition.

As we advance, we'll explore concepts of object classification and machine learning,
enabling you to create and use object detectors and classifiers, and even track objects in
movies or video camera feeds. Then, we'll extend our work into 3D tracking and
augmented reality. Finally, we'll learn about artificial neural networks (ANNs) and deep
neural networks (DNNs) as we develop applications to recognize handwritten digits, and
to classify a person's gender and age.

By the end of this book, you will have acquired the right knowledge and skills to embark
on your own real-world computer vision projects.

Who this book is for
This book is intended for people interested in learning computer vision, machine learning,
and OpenCV in the context of practical real-world applications. The book will appeal to
computer vision novices as well as experts who want to get up to date with OpenCV 4 and
Python 3. Readers should be familiar with basic Python programming, but no prior
knowledge of image processing, computer vision, or machine learning is required.



Preface

[ 2 ]

What this book covers
Chapter 1, Setting Up OpenCV, explains how to set up OpenCV 4 with Python 3 on various
platforms. It also provides troubleshooting steps for common problems.

Chapter 2, Handling Files, Cameras, and GUIs, introduces OpenCV's I/O functionalities. It
also discusses an object-oriented design for a GUI project that we will develop further in
other chapters.

Chapter 3, Processing Images with OpenCV, presents some techniques required to alter
images, such as manipulating colors, sharpening an image, marking contours of objects,
and detecting geometric shapes.

Chapter 4, Depth Estimation and Segmentation, shows you how to use data from a depth
camera to identify foreground and background regions, such that we can limit an effect to
only the foreground or background.

Chapter 5, Detecting and Recognizing Faces, introduces some of OpenCV's functionality for
face detection and recognition, along with the data files that define particular types of
detectable objects.

Chapter 6, Retrieving Images and Searching Using Image Descriptors, shows how to describe
the features of an image with the help of OpenCV, and how to make use of features to
match and search for images.

Chapter 7, Building Custom Object Detectors, applies a combination of computer vision and
machine learning algorithms to locate and classify objects in an image. It shows how to
implement this combination of algorithms with OpenCV.

Chapter 8, Tracking Objects, demonstrates ways to track and predict the motion of people
and objects in a video or live camera feed.

Chapter 9, Camera Models and Augmented Reality, enables you to build an augmented reality
application that uses information about cameras, objects, and motion to superimpose 3D
graphics atop tracked objects in real time.

Chapter 10, Introduction to Neural Networks with OpenCV, introduces you to artificial neural
networks (ANNs) and deep neural networks (DNNs) in OpenCV, and illustrates their
usage in real-world applications.

Appendix A, Bending Color Space with a Curves Filter, describes the concept of color curves
and our implementation of them using SciPy.



Preface

[ 3 ]

To get the most out of this book
The reader is expected to have at least basic proficiency in the Python programming
language.

A Windows, macOS, or Linux development machine is recommended. You can refer to
Chapter 1, Setting Up OpenCV, for instructions about setting up OpenCV 4, Python 3, and
other dependencies.

This book takes a hands-on approach to learning and includes 77 sample scripts, along with
sample data. Working through these examples as you read the book will help enforce the
concepts.

The code for this book is released under the BSD 3-Clause open source license, which is the
same as the license used by OpenCV itself. The reader is encouraged to use, modify,
improve, and even publish their changes to these example programs.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Preface

[ 4 ]

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at http://bit.ly/2STXnRN.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781789531619_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "OpenCV provides the VideoCapture and VideoWriter classes, which support
various video file formats."

A block of code is set as follows:

import cv2

grayImage = cv2.imread('MyPic.png', cv2.IMREAD_GRAYSCALE)
cv2.imwrite('MyPicGray.png', grayImage)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import cv2

cameraCapture = cv2.VideoCapture(0)
fps = 30  # An assumption
size = (int(cameraCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),
        int(cameraCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
    'MyOutputVid.avi', cv2.VideoWriter_fourcc('M','J','P','G'), fps, size)

In general, command-line input or output is written as follows:

$ pip install opencv-contrib-python

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
http://bit.ly/2STXnRN
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789531619_ColorImages.pdf


Preface

[ 5 ]

Alternatively, for Windows, command-line input or output may be written as follows:

> pip install opencv-contrib-python

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Now, under System variables, select Path and click on the Edit... button."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support, selecting your book, clicking on
the Errata Submission Form link, and entering the details. Also, if you encounter a problem
with the code from the book's GitHub repository, you can file an issue report at https://
github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-
Edition/issues.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

https://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition/issues
http://authors.packtpub.com/


Preface

[ 6 ]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/


1
Setting Up OpenCV

You've picked up this book, so you may already have an idea of what OpenCV is. Maybe
you heard of capabilities that seem to come straight out of science fiction, such as training
an artificial intelligence model to recognize anything that it sees through a camera. If this is
your interest, you will not be disappointed! OpenCV stands for Open Source Computer
Vision. It is a free computer vision library that allows you to manipulate images and videos
to accomplish a variety of tasks, from displaying frames from a webcam to teaching a robot
to recognize real-life objects.

In this book, you will learn to leverage the immense potential of OpenCV with the Python
programming language. Python is an elegant language with a relatively shallow learning
curve and very powerful features. This chapter is a quick guide to setting up Python 3,
OpenCV 4, and other dependencies. As part of OpenCV, we will set up the
opencv_contrib modules, which offer additional functionality that is maintained by the
OpenCV community rather than the core development team. After setup, we will also look
at OpenCV's Python sample scripts and documentation.

The following related libraries are covered in this chapter:

NumPy: This library is a dependency of OpenCV's Python bindings. It provides
numeric computing functionality, including efficient arrays.
SciPy: This library is a scientific computing library that is closely related to
NumPy. It is not required by OpenCV, but it is useful if you wish to manipulate
data in OpenCV images.
OpenNI 2: This library is an optional dependency of OpenCV. It adds support
for certain depth cameras, such as the Asus Xtion PRO.

OpenCV 4 has dropped support for OpenNI 1 along with all OpenNI 1
modules, such as SensorKinect. This change means that some old depth
cameras, such as the Xbox version of Microsoft Kinect, might not be
supported in OpenCV 4.



Setting Up OpenCV Chapter 1

[ 8 ]

For this book's purposes, OpenNI 2 can be considered optional. It is used throughout
Chapter 4, Depth Estimation and Segmentation, but is not used in the other chapters or
appendices.

This book focuses on OpenCV 4, the new major release of the OpenCV
library. Additional information about OpenCV is available at
http://opencv.org, and the official documentation is available at
http://docs.opencv.org/master.

We will cover the following topics in this chapter:

What's new in OpenCV 4
Choosing and using the right setup tools
Running samples
Finding documentation, help, and updates

Technical requirements
This chapter assumes that you are using one of the following operating systems:

Windows 7 SP1 or a later version
macOS 10.7 (Lion) or a later version
Debian Jessie or a later version, or a derivative such as the following:

Ubuntu 14.04 or a later version
Linux Mint 17 or a later version

For editing Python scripts and other text files, this book's authors simply recommend that
you should have a good text editor. Examples include the following:

Notepad++ for Windows
BBEdit (free version) for macOS
GEdit for the GNOME desktop environment on Linux
Kate for the KDE Plasma desktop environment on Linux

Besides the operating system, there are no other prerequisites for this setup chapter.

http://opencv.org
http://docs.opencv.org/master


Setting Up OpenCV Chapter 1

[ 9 ]

What's new in OpenCV 4
If you are an OpenCV veteran, you might want to know more about OpenCV 4's changes
before you decide to install it. Here are some of the highlights:

The C++ implementation of OpenCV has been updated to C++11. OpenCV's
Python bindings wrap the C++ implementation, so as Python users, we may gain
some performance advantages from this update, even though we are not using
C++ directly.
The deprecated C implementation of OpenCV and the deprecated Python
bindings for the C implementation have been removed.
Many new optimizations have been implemented. Existing OpenCV 3 projects
can take advantage of many of these optimizations without further changes
beyond updating the OpenCV version. For OpenCV C++ projects, an entirely
new optimization pipeline named G-API is available; however, OpenCV's
Python bindings currently do not support this optimization pipeline.
Many new machine learning models are available in OpenCV's DNN module.
The tools to train Haar cascades and LBP cascades (to detect custom objects) have
been removed. There is a proposal to reimplement these tools, along with
support for additional models, in a future update for OpenCV 4.
The KinectFusion algorithm (for three-dimensional reconstruction using a
Microsoft Kinect 2 camera) is now supported.
The DIS algorithm for dense optical flow has been added.
A new module has been added for detecting and decoding QR codes.

Whether or not you have used a previous version of OpenCV, this book will serve you as a
general guide to OpenCV 4, and some of the new features will receive special attention in
subsequent chapters.

Choosing and using the right setup tools
We are free to choose various setup tools, depending on our operating system and how
much configuration we want to do.



Setting Up OpenCV Chapter 1

[ 10 ]

Regardless of the choice of operating system, Python offers some built-in tools that are
useful for setting up a development environment. These tools include a package manager
called pip and a virtual environment manager called venv. Some of this chapter's
instructions will cover pip specifically, but if you would like to learn about venv, please
refer to the official Python documentation at https://docs.python.org/3/library/venv.
html.

You should consider using venv if you plan to maintain a variety of
Python projects that might have conflicting dependencies – for example,
projects that depend on different versions of OpenCV. Each of venv's
virtual environments has its own set of installed libraries, and we can
switch between these environments without reinstalling anything. Within
a given virtual environment, libraries can be installed using pip or, in
some cases, other tools.

Let's take an overview of the setup tools available for Windows, macOS, Ubuntu, and other
Unix-like systems.

Installation on Windows
Windows does not come with Python preinstalled. However, an installation wizard is
available for Python, and Python provides a package manager called pip, which lets us 
easily install ready-made builds of NumPy, SciPy, and OpenCV. Alternatively, we can
build OpenCV from source in order to enable nonstandard features, such as support for
depth cameras via OpenNI 2. OpenCV's build system uses CMake for configuring the
system and Visual Studio for compilation.

Before anything else, let's install Python. Go to https://www.python.org/getit/ and 
download and run the most recent installer for Python 3.8. You probably want an installer
for 64-bit Python, though OpenCV can work with 32-bit Python too.

Once Python has been installed, we can use pip to install NumPy and SciPy. Open the
Command Prompt and run the following command:

> pip install numpy scipy

Now, we must decide whether we want a ready-made build of OpenCV (without support
for depth cameras) or a custom build (with support for depth cameras). The next two
subsections cover these alternatives.

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/
https://www.python.org/getit/


Setting Up OpenCV Chapter 1

[ 11 ]

Using a ready-made OpenCV package
OpenCV, including the opencv_contrib modules, can be installed as a pip package. This
is as simple as running the following command:

> pip install opencv-contrib-python

If you want your OpenCV installation to include non-free content, such as patented
algorithms, then you can run the following command instead:

> pip install opencv-contrib-python-nonfree

If you intend to distribute software that depends on OpenCV's non-free
content, you should do your own investigation of how the patent and
licensing issues might apply in specific countries and to specific use cases.
OpenCV's non-free content includes implementations of the patented SIFT
and SURF algorithms, which we will introduce in Chapter 6, Retrieving
Images and Searching Using Image Descriptors.

You might find that one of these pip packages offers all the OpenCV features you currently
want. On the other hand, if you intend to use depth cameras, or if you want to learn about
the general process of making a custom build of OpenCV, you should not install the
OpenCV pip package; you should proceed to the next subsection instead.

Building OpenCV from source
If you want support for depth cameras, you should also install OpenNI 2, which is available
as a set of precompiled binaries with an installation wizard. Then, we must build OpenCV
from source using CMake and Visual Studio.

To obtain OpenNI 2, go to https://structure.io/openni and download the latest ZIP for
Windows and for your system's architecture (x64 or x86). Unzip it to get an installer file,
such as OpenNI-Windows-x64-2.2.msi. Run the installer.

Now, let's set up Visual Studio. To build OpenCV 4, we need Visual Studio 2015 or a later
version. If you do not already have a suitable version, go
to https://visualstudio.microsoft.com/downloads/ and download and run one of the
installers for one of the following:

The free Visual Studio 2019 Community edition
Any of the paid Visual Studio 2019 editions, which have a 30-day trial period

https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/


Setting Up OpenCV Chapter 1

[ 12 ]

During installation, ensure that any optional C++ components are selected. After the
installation finishes, reboot.

For OpenCV 4, the build configuration process requires CMake 3 or a later version. Go
to https://cmake.org/download/, download the installer for the latest version of CMake
for your architecture (x64 or x86), and run it. During installation, select either Add CMake
to the system PATH for all users or Add CMake to the system PATH for current user.

At this stage, we have set up the dependencies and build environment for our custom build
of OpenCV. Now, we need to obtain the OpenCV source code and configure and build it.
We can do this by following these steps:

Go to https://opencv.org/releases/ and get the latest OpenCV download for1.
Windows. It is a self-extracting ZIP. Run it and, when prompted, enter any
destination folder, which we will refer to as <opencv_unzip_destination>.
During extraction, a subfolder is created
at <opencv_unzip_destination>\opencv.
Go to https://github.com/opencv/opencv_contrib/releases and download2.
the latest ZIP of the opencv_contrib modules. Unzip this file to any destination
folder, which we will refer to as <opencv_contrib_unzip_destination>.
Open the Command Prompt and run the following command to make another3.
folder where our build will go:

> mkdir <build_folder>

Change the directory to the build folder:

> cd <build_folder>

Now, we are ready to configure our build with CMake's command-line interface.4.
To understand all the options, we can read the code
in <opencv_unzip_destination>\opencv\CMakeLists.txt. However, for
this book's purposes, we only need to use the options that will give us a release
build with Python bindings, opencv_contrib modules, non-free content, and
depth camera support via OpenNI 2. Some options differ slightly, depending on
the Visual Studio version and target architecture (x64 or x86). To create a 64-bit
(x64) solution for Visual Studio 2019, run the following command (but replace
<opencv_contrib_unzip_destination> and
<opencv_unzip_destination> with the actual paths):

> cmake -DCMAKE_BUILD_TYPE=RELEASE -DOPENCV_SKIP_PYTHON_LOADER=ON
-DPYTHON3_LIBRARY=C:/Python37/libs/python37.lib
-DPYTHON3_INCLUDE_DIR=C:/Python37/include -DWITH_OPENNI2=ON

https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://cmake.org/download/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases


Setting Up OpenCV Chapter 1

[ 13 ]

-DOPENCV_EXTRA_MODULES_PATH="<opencv_contrib_unzip_destination>
/modules" -DOPENCV_ENABLE_NONFREE=ON -G "Visual Studio 16 2019" -A
x64 "<opencv_unzip_destination>/opencv/sources"

Alternatively, to create a 32-bit (x86) solution for Visual Studio 2019, run the
following command (but replace <opencv_contrib_unzip_destination> and
<opencv_unzip_destination> with the actual paths):

> cmake -DCMAKE_BUILD_TYPE=RELEASE -DOPENCV_SKIP_PYTHON_LOADER=ON
-DPYTHON3_LIBRARY=C:/Python37/libs/python37.lib
-DPYTHON3_INCLUDE_DIR=C:/Python37/include -DWITH_OPENNI2=ON
-DOPENCV_EXTRA_MODULES_PATH="<opencv_contrib_unzip_destination>
/modules" -DOPENCV_ENABLE_NONFREE=ON -G "Visual Studio 16 2019" -A
Win32 "<opencv_unzip_destination>/opencv/sources"

As the preceding command runs, it prints information about dependencies that
are either found or missing. OpenCV has many optional dependencies, so do not
panic (yet) about missing dependencies. However, if the build does not finish
successfully, try installing missing dependencies. (Many are available as prebuilt
binaries.) Then, repeat this step.

CMake will have generated a Visual Studio solution file at5.
<opencv_build_folder>/OpenCV.sln. Open it in Visual Studio. Ensure that
the Release configuration (not the Debug configuration) is selected in the drop-
down list in the toolbar near the top of the Visual Studio window. (OpenCV's
Python bindings will probably not build in Debug configuration, because most
Python distributions do not contain debug libraries.) Go to the BUILD menu and
select Build Solution. Watch the build messages in the Output pane at the
bottom of the window, and wait for the build to finish.
By this stage, OpenCV has been built, but it hasn't been installed at a location6.
where Python can find it. Before proceeding further, let's ensure that our Python
environment does not already contain a conflicting build of OpenCV. Find and
delete any OpenCV files in Python's DLLs folder and site_packages folder. For
example, these files might match the following patterns:
C:\Python37\DLLs\opencv_*.dll, C:\Python37\Lib\site-
packages\opencv, and C:\Python37\Lib\site-packages\cv2.pyd.



Setting Up OpenCV Chapter 1

[ 14 ]

Finally, let's install our custom build of OpenCV. CMake has generated an7.
INSTALL project as part of the OpenCV.sln Visual Studio solution. Look in
the Solution Explorer pane on the right-hand side of the Visual Studio window,
find the CMakeTargets | INSTALL project, right-click on it, and select Build
from the context menu. Again, watch the build messages in the Output pane at
the bottom of the window and wait for the build to finish. Then, quit Visual
Studio. Edit the system's Path variable and append either
;<build_folder>\install\x64\vc15\bin (for a 64-bit build) or
;<build_folder>\install\x86\vc15\bin (for a 32-bit build). This folder is
where the INSTALL project put the OpenCV DLL files, which are library files that
Python will load dynamically at runtime. The OpenCV Python module is located
at a path such as C:\Python37\Lib\site-packages\cv2.pyd. Python will
find it there, so you do not need to add it to the Path. Log out and log back in (or
reboot).

The preceding instructions refer to editing the system's Path variable.
This task can be done in the Environment Variables window of Control
Panel, as described in the following steps:

Click on the Start menu and launch Control Panel. Now,1.
navigate to System and Security | System | Advanced system
settings. Click on the Environment Variables... button.

Now, under System variables, select Path and click on2.
the Edit... button.

Make changes as directed.3.

To apply the changes, click on all the OK buttons (until we are4.
back in the main window of the Control Panel).

Then, log out and log back in. (Alternatively, reboot.)5.

Now, we have completed the OpenCV build process on Windows, and we have a custom
build that is suitable for all of this book's Python projects.

In the future, if you want to update to a new version of the OpenCV
source code, repeat all the preceding steps, starting from downloading
OpenCV.



Setting Up OpenCV Chapter 1

[ 15 ]

Installation on macOS
macOS comes with a preinstalled Python distribution that has been customized by Apple
for the system's internal needs. To develop our own projects, we should make a separate 
Python installation to ensure that we do not conflict with the system's Python needs.

For macOS, there are several possible approaches for obtaining standard versions of Python
3, NumPy, SciPy, and OpenCV. All approaches ultimately require OpenCV to be compiled
from source using the Xcode command-line tools. However, depending on the approach,
this task is automated for us in various ways by third-party tools. We will look at this kind
of approach using a package manager called Homebrew. A package manager can
potentially do everything that CMake can, plus it helps us resolve dependencies and
separate our development libraries from system libraries.

MacPorts is another popular package manager for macOS. However, at
the time of writing, MacPorts does not offer packages for OpenCV 4 or
OpenNI 2, so we will not use it in this book.

Before proceeding, let's make sure that the Xcode command line tools are set up properly.
Open a Terminal and run the following command:

    $ xcode-select --install

Agree to the license agreement and any other prompts. The installation should run to
completion. Now, we have the compilers that Homebrew requires.

Using Homebrew with ready-made packages
Starting on a system where Xcode and its command-line tools are already set up, the
following steps will give us an OpenCV installation via Homebrew:

Open a Terminal and run the following command to install Homebrew:1.

    $ /usr/bin/ruby -e "$(curl -fsSL https://raw.github
      usercontent.com/Homebrew/install/master/install)"

Homebrew does not automatically put its executables in PATH. To do so, create or2.
edit the ~/.profile file and add the following line at the top of the code:

    export PATH=/usr/local/bin:/usr/local/sbin:$PATH



Setting Up OpenCV Chapter 1

[ 16 ]

Save the file and run this command to refresh PATH:

    $ source ~/.profile

Note that executables installed by Homebrew now take precedence over
executables installed by the system.

For Homebrew's self-diagnostic report, run the following command:3.

    $ brew doctor

Follow any troubleshooting advice it gives.

Now, update Homebrew:4.

    $ brew update

Run the following command to install Python 3.7:5.

    $ brew install python

Now, we want to install OpenCV with the opencv_contrib modules. At the6.
same time, we want to install dependencies such as NumPy. To accomplish this,
run the following command:

    $ brew install opencv

Homebrew does not provide an option to install OpenCV with OpenNI 2
support. Homebrew always installs OpenCV with the opencv_contrib
modules, including non-free content such as the patented SIFT and SURF
algorithms, which we will cover in Chapter 6, Retrieving Images and
Searching Using Image Descriptors. If you intend to distribute software that
depends on OpenCV's non-free content, you should do your own
investigation of how the patent and licensing issues might apply in
specific countries and to specific use cases.

Similarly, run the following command to install SciPy:7.

    $ brew install scipy

Now, we have all we need to develop OpenCV projects with Python on macOS.



Setting Up OpenCV Chapter 1

[ 17 ]

Using Homebrew with your own custom packages
Just in case you ever need to customize a package, Homebrew makes it easy to edit existing
package definitions:

$ brew edit opencv

The package definitions are actually scripts in the Ruby programming language. Tips on 
editing them can be found on the Homebrew wiki page at https://github.com/Homebrew/
brew/blob/master/docs/Formula-Cookbook.md. A script may specify Make or CMake
configuration flags, among other things.

To see which CMake configuration flags are relevant to OpenCV, refer
to https://github.com/opencv/opencv/blob/master/CMakeLists.txt in
the official OpenCV repository on GitHub.

After making edits to the Ruby script, save it.

The customized package can be treated as normal. For example, it can be installed as
follows:

$ brew install opencv

Installation on Debian, Ubuntu, Linux Mint, and
similar systems
Debian, Ubuntu, Linux Mint, and related Linux distributions use the apt package manager.
On these systems, it is easy to install packages for Python 3 and many Python modules,
including NumPy and SciPy. An OpenCV package is also available via apt, but at the time
of writing, this package has not been updated to OpenCV 4. Instead, we can obtain
OpenCV 4 (without support for depth cameras) from Python's standard package manager,
pip. Alternatively, we can build OpenCV 4 from source. When built from source, OpenCV
can support depth cameras via OpenNI 2, which is available as a set of precompiled
binaries with an installation script.

Regardless of our approach to obtaining OpenCV, let's begin by updating apt so that we
can obtain the latest packages. Open a Terminal and run the following command:

$ sudo apt-get update

https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/Homebrew/brew/blob/master/docs/Formula-Cookbook.md
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt
https://github.com/opencv/opencv/blob/master/CMakeLists.txt


Setting Up OpenCV Chapter 1

[ 18 ]

Having updated apt, let's run the following command to install NumPy and SciPy for
Python 3:

$ sudo apt-get install python3-numpy python3-scipy

Equivalently, we could have used the Ubuntu Software Center, which is
the apt package manager's graphical frontend.

Now, we must decide whether we want a ready-made build of OpenCV (without support
for depth cameras) or a custom build (with support for depth cameras). The next two
subsections cover these alternatives.

Using a ready-made OpenCV package
OpenCV, including the opencv_contrib modules, can be installed as a pip package. This
is as simple as running the following command:

$ pip3 install opencv-contrib-python

If you want your OpenCV installation to include non-free content, such as patented
algorithms, then you can run the following command instead:

$ pip install opencv-contrib-python-nonfree

If you intend to distribute software that depends on OpenCV's non-free
content, you should do your own investigation of how the patent and
licensing issues might apply in specific countries and to specific use cases.
OpenCV's non-free content includes implementations of the patented SIFT
and SURF algorithms, which we will introduce in Chapter 6, Retrieving
Images and Searching Using Image Descriptors. 

You might find that one of these pip packages offers all the OpenCV features you currently
want. On the other hand, if you intend to use depth cameras, or if you want to learn about
the general process of making a custom build of OpenCV, you should not install the
OpenCV pip package; you should proceed to the next subsection instead.



Setting Up OpenCV Chapter 1

[ 19 ]

Building OpenCV from source
To build OpenCV from source, we need a C++ build environment and the CMake build
configuration system. Specifically, we need CMake 3. On Ubuntu 14.04, Linux Mint 17, and
related systems, the cmake package is CMake 2, but a more up-to-date cmake3 package is
also available. On these systems, run the following commands to ensure that the necessary
versions of CMake and other build tools are installed:

$ sudo apt-get remove cmake
$ sudo apt-get install build-essential cmake3 pkg-config

On the other hand, on more recent operating systems, the cmake package is CMake 3, and
we can simply run the following command:

$ sudo apt-get install build-essential cmake pkg-config

As part of the build process for OpenCV, CMake will need to access the internet to
download additional dependencies. If your system uses a proxy server, ensure that your
environment variables for the proxy server have been configured properly. Specifically,
CMake relies on the http_proxy and https_proxy environment variables. To define
these, you can edit your ~/.bash_profile script and add lines such as the following (but
modify them so that they match your own proxy URLs and port numbers):

export http_proxy=http://myproxy.com:8080
export https_proxy=http://myproxy.com:8081

If you are unsure whether your system uses a proxy server, it probably
doesn't, so you can ignore this step.

To build OpenCV's Python bindings, we need an installation of the Python 3 development
headers. To install these, run the following command:

$ sudo apt-get install python3-dev

To capture frames from typical USB webcams, OpenCV depends on Video for Linux (V4L).
On most systems, V4L comes preinstalled, but just in case it is missing, run the following
command:

$ sudo apt-get install libv4l-dev



Setting Up OpenCV Chapter 1

[ 20 ]

As we mentioned previously, to support depth cameras, OpenCV depends on OpenNI 2.
Go to https://structure.io/openni and download the latest ZIP of OpenNI 2 for Linux
and for your system's architecture (x64, x86, or ARM). Unzip it to any destination, which
we will refer to as <openni2_unzip_destination>. Run the following commands:

$ cd <openni2_unzip_destination>
$ sudo ./install.sh

The preceding installation script configures the system so that it supports depth cameras as
USB devices. Moreover, the script creates environment variables that refer to library files
inside <openni2_unzip_destination>. Therefore, if you move
<openni2_unzip_destination> at a later date, you will need to run install.sh again.

Now that we have the build environment and dependencies installed, we can obtain and
build the OpenCV source code. To do so, follow these steps:

Go to https://opencv.org/releases/ and download the latest source package.1.
Unzip it to any destination folder, which we will refer to as
<opencv_unzip_destination>.
Go to https://github.com/opencv/opencv_contrib/releases and download2.
the latest source package for the opencv_contrib modules. Unzip it to any
destination folder, which we will refer to
as <opencv_contrib_unzip_destination>.
Open a Terminal. Run the following commands to create a directory where we3.
will put our OpenCV build:

    $ mkdir <build_folder>

Change into the newly created directory: 

    $ cd <build_folder>

Now, we can use CMake to generate a build configuration for OpenCV. The4.
output of this configuration process will be a set of Makefiles, which are scripts
we can use to build and install OpenCV. A complete set of CMake configuration
options for OpenCV is defined in
the <opencv_unzip_destination>/opencv/sources/CMakeLists.txt file.
For our purposes, we care about the options that relate to OpenNI 2 support,
Python bindings, opencv_contrib modules, and non-free content. Configure
OpenCV by running the following command:

$ cmake -D CMAKE_BUILD_TYPE=RELEASE -D BUILD_EXAMPLES=ON -D
WITH_OPENNI2=ON -D BUILD_opencv_python2=OFF -D
BUILD_opencv_python3=ON -D PYTHON3_EXECUTABLE=/usr/bin/python3.6 -D

https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://structure.io/openni
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases
https://github.com/opencv/opencv_contrib/releases


Setting Up OpenCV Chapter 1

[ 21 ]

PYTHON3_INCLUDE_DIR=/usr/include/python3.6 -D
PYTHON3_LIBRARY=/usr/lib/python3.6/config-3.6m-x86_64-linux-
gnu/libpython3.6.so -D
OPENCV_EXTRA_MODULES_PATH=<opencv_contrib_unzip_destination> -D
OPENCV_ENABLE_NONFREE=ON <opencv_unzip_destination>

Finally, run the following commands to interpret our newly generated makefiles,5.
and thereby build and install OpenCV:

$ make -j8
$ sudo make install

So far, we have completed the OpenCV build process on Debian, Ubuntu, or a
similar system, and we have a custom build that is suitable for all of this book's Python
projects.

Installation on other Unix-like systems
On other Unix-like systems, the package manager and available packages may differ.
Consult your package manager's documentation and search for packages with opencv in
their names. Remember that OpenCV and its Python bindings might be split into multiple
packages.

Also, look for any installation notes that have been published by the system provider, the
repository maintainer, or the community. Since OpenCV uses camera drivers and media
codecs, getting all of its functionality to work can be tricky on systems with poor
multimedia support. Under some circumstances, system packages might need to be
reconfigured or reinstalled for compatibility.

If packages are available for OpenCV, check their version number. OpenCV 4 is
recommended for this book's purposes. Also, check whether the packages offer Python
bindings and depth camera support via OpenNI 2. Finally, check whether anyone in the
developer community has reported success or failure in using the packages.

If, instead, you want to do a custom build of OpenCV from source, it might be helpful to
refer to the previous section's steps for Debian, Ubuntu, and similar systems, and adapt
these steps to the package manager and packages that are present on another system.



Setting Up OpenCV Chapter 1

[ 22 ]

Running samples
Running a few sample scripts is a good way to test whether OpenCV has been set up
correctly. Some samples are included in OpenCV's source code archive. If you have not
already obtained the source code, go to https://opencv.org/releases/ and download one
of the following archives:

For Windows, download the latest archive, labeled Windows. It is a self-
extracting ZIP. Run it and, when prompted, enter any destination folder, which
we will refer to as <opencv_unzip_destination>. Find the Python samples in
<opencv_unzip_destination>/opencv/samples/python.
For other systems, download the latest archive, labeled Sources. It is a ZIP file.
Unzip it to any destination folder, which we will refer to
as <opencv_unzip_destination>. Find the Python samples
in <opencv_unzip_destination>/samples/python.

Some of the sample scripts require command-line arguments. However, the following
scripts (among others) should work without any arguments:

hist.py: This script displays a photo. Press A, B, C, D, or E to see the variations
of the photo, along with a corresponding histogram of color or grayscale values.
opt_flow.py: This script displays a webcam feed with a superimposed
visualization of the optical flow, or in other words, the direction of motion.
Slowly wave your hand at the webcam to see the effect. Press 1 or 2 for
alternative visualizations.

To exit a script, press Esc (not the Windows close button).

If we encounter the ImportError: No module named cv2 message, then this means that
we are running the script from a Python installation that does not know anything about
OpenCV. There are two possible explanations for this:

Some steps in the OpenCV installation might have failed or been missed. Go back
and review the steps.

https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/
https://opencv.org/releases/


Setting Up OpenCV Chapter 1

[ 23 ]

If we have multiple Python installations on the machine, we might be using the
wrong version of Python to launch the script. For example, on macOS, it might
be the case that OpenCV has been installed for Homebrew Python, but we are
running the script with the system's version of Python. Go back and review the
installation steps about editing the system's PATH variable. Also, try launching
the script manually from the command line using commands such as the
following:

$ python hist.py

You can also try the following command:

$ python3.8 python/camera.py

As another possible means of selecting a different Python installation, try editing
the sample script to remove the #! lines. These lines might explicitly associate the
script with the wrong Python installation (for our particular setup).

Finding documentation, help, and updates
OpenCV's documentation can be found at http://docs.opencv.org/, where you can either
read it online or download it for offline reading. If you write code on airplanes or other 
places without internet access, you will definitely want to keep offline copies of the
documentation.

The documentation includes a combined API reference for OpenCV's C++ API and its
Python API. When you look up a class or function, be sure to read the section under the
heading Python.

OpenCV's Python module is named cv2. The 2 in cv2 has nothing to do
with the version number of OpenCV; we really are using OpenCV 4.
Historically, there was a cv Python module that wrapped a now-obsolete
C version of OpenCV. The cv module does not exist anymore in OpenCV
4. However, the OpenCV documentation sometimes erroneously refers to
the module name as cv instead of cv2. Just remember that in OpenCV 4,
the correct Python module name is always cv2.

http://docs.opencv.org/


Setting Up OpenCV Chapter 1

[ 24 ]

If the documentation does not seem to answer your questions, try talking to the OpenCV
community. Here are some sites where you will find helpful people:

The OpenCV forum: https://answers.opencv.org/questions/

Adrian Rosebrock's website: http://www.pyimagesearch.com/
Joseph Howse's website for his books and presentations:
http://nummist.com/opencv/

Lastly, if you are an advanced user who wants to try new features, bug fixes, and sample
scripts from the latest (unstable) OpenCV source code, have a look at the project's
repository at https://github.com/opencv/opencv/.

Summary
By now, we should have an OpenCV installation that will serve our needs for the diverse
projects described in this book. Depending on which approach we took, we may also have a
set of tools and scripts that can be used to reconfigure and rebuild OpenCV for our future
needs.

Now, we also know where to find OpenCV's Python samples. These samples covered a
different range of functionalities outside this book's scope, but they are useful as additional
learning aids.

In the next chapter, we will familiarize ourselves with the most basic functions of the
OpenCV API, namely, displaying images and videos, capturing videos through a webcam,
and handling basic keyboard and mouse inputs.

https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
https://answers.opencv.org/questions/
http://www.pyimagesearch.com/
http://nummist.com/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/
https://github.com/opencv/opencv/


2
Handling Files, Cameras, and

GUIs
Installing OpenCV and running samples is fun, but at this stage, we want to try things out
in our own way. This chapter introduces OpenCV's I/O functionality. We also discuss the
concept of a project and the beginnings of an object-oriented design for this project, which
we will flesh out in subsequent chapters.

By starting with a look at I/O capabilities and design patterns, we will build our project in
the same way we would make a sandwich: from the outside in. Bread slices and spread, or
endpoints and glue, come before fillings or algorithms. We choose this approach because
computer vision is mostly extroverted—it contemplates the real world outside our
computer—and we want to apply all of our subsequent algorithmic work to the real world
through a common interface.

Specifically, in this chapter, our code samples and discussions will cover the following
tasks:

Reading images from image files, video files, camera devices, or raw bytes of
data in memory
Writing images to image files or video files
Manipulating image data in NumPy arrays
Displaying images in windows
Handling keyboard and mouse input
Implementing an application with an object-oriented design



Handling Files, Cameras, and GUIs Chapter 2

[ 26 ]

Technical requirements
This chapter uses Python, OpenCV, and NumPy. Please refer back to Chapter 1, Setting Up
OpenCV, for installation instructions.

The complete code for this chapter can be found in this book's GitHub
repository, https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-
with-Python-Third-Edition, in the Chapter02 folder.

Basic I/O scripts
Most CV applications need to get images as input. Most also produce images as output. An
interactive CV application might require a camera as an input source and a window as an
output destination. However, other possible sources and destinations include image files,
video files, and raw bytes. For example, raw bytes might be transmitted via a network
connection, or they might be generated by an algorithm if we incorporate procedural
graphics into our application. Let's look at each of these possibilities.

Reading/writing an image file
OpenCV provides the imread function to load an image from a file and
the imwrite function to write an image to a file. These functions support various file
formats for still images (not videos). The supported formats vary—as formats can be added
or removed in a custom build of OpenCV—but normally BMP, PNG, JPEG, and TIFF are
among the supported formats.

Let's explore the anatomy of the representation of an image in OpenCV and NumPy. An
image is a multidimensional array; it has columns and rows of pixels, and each pixel has a
value. For different kinds of image data, the pixel value may be formatted in different
ways. For example, we can create a 3x3 square black image from scratch by simply creating
a 2D NumPy array:

img = numpy.zeros((3, 3), dtype=numpy.uint8)

If we print this image to a console, we obtain the following result:

array([[0, 0, 0],
       [0, 0, 0],
       [0, 0, 0]], dtype=uint8)

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Handling Files, Cameras, and GUIs Chapter 2

[ 27 ]

Here, each pixel is represented by a single 8-bit integer, which means that the values for
each pixel are in the 0-255 range, where 0 is black, 255 is white, and the in-between values
are shades of gray. This is a grayscale image.

Let's now convert this image into blue-green-red (BGR) format using
the cv2.cvtColor function:

img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

Let's observe how the image has changed:

array([[[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]],

       [[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]],

       [[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]]], dtype=uint8)

As you can see, each pixel is now represented by a three-element array, with each integer
representing one of the three color channels: B, G, and R, respectively. Other common color
models, such as HSV, will be represented in the same way, albeit with different value
ranges. For example, the hue value of the HSV color model has a range of 0-180.

For more information about color models, refer to Chapter 3, Processing
Images with OpenCV, specifically the Converting between different color
models section.

You can check the structure of an image by inspecting the shape property, which returns
rows, columns, and the number of channels (if there is more than one).

Consider this example:

img = numpy.zeros((5, 3), dtype=numpy.uint8)
print(img.shape)

The preceding code will print (5, 3); in other words, we have a grayscale image with 5
rows and 3 columns. If you then converted the image into BGR, the shape would be (5,
3, 3), which indicates the presence of three channels per pixel.



Handling Files, Cameras, and GUIs Chapter 2

[ 28 ]

Images can be loaded from one file format and saved to another. For example, let's convert
an image from PNG into JPEG:

import cv2

image = cv2.imread('MyPic.png')
cv2.imwrite('MyPic.jpg', image)

OpenCV's Python module is called cv2 even though we are using
OpenCV 4.x and not OpenCV 2.x. Historically, OpenCV had two Python
modules: cv2 and cv. The latter wrapped a legacy version of OpenCV
implemented in C. Nowadays, OpenCV has only the cv2 Python module,
which wraps the current version of OpenCV implemented in C++.

By default, imread returns an image in the BGR color format even if the file uses a
grayscale format. BGR represents the same color model as red-green-blue (RGB), but the
byte order is reversed.

Optionally, we may specify the mode of imread. The supported options include the
following:

cv2.IMREAD_COLOR: This is the default option, providing a 3-channel BGR
image with an 8-bit value (0-255) for each channel.
cv2.IMREAD_GRAYSCALE: This provides an 8-bit grayscale image.
cv2.IMREAD_ANYCOLOR: This provides either an 8-bit-per-channel BGR image or
an 8-bit grayscale image, depending on the metadata in the file.
cv2.IMREAD_UNCHANGED: This reads all of the image data, including the alpha or
transparency channel (if there is one) as a fourth channel.
cv2.IMREAD_ANYDEPTH: This loads an image in grayscale at its original bit
depth. For example, it provides a 16-bit-per-channel grayscale image if the file
represents an image in this format.
cv2.IMREAD_ANYDEPTH | cv2.IMREAD_COLOR: This combination loads an
image in BGR color at its original bit depth.
cv2.IMREAD_REDUCED_GRAYSCALE_2: This loads an image in grayscale at half
its original resolution. For example, if the file contains a 640 x 480 image, it is
loaded as a 320 x 240 image.
cv2.IMREAD_REDUCED_COLOR_2: This loads an image in 8-bit-per-channel BGR
color at half its original resolution.



Handling Files, Cameras, and GUIs Chapter 2

[ 29 ]

cv2.IMREAD_REDUCED_GRAYSCALE_4: This loads an image in grayscale at one-
quarter of its original resolution.
cv2.IMREAD_REDUCED_COLOR_4: This loads an image in 8-bit-per-channel color
at one-quarter of its original resolution.
cv2.IMREAD_REDUCED_GRAYSCALE_8: This loads an image in grayscale at one-
eighth of its original resolution.
cv2.IMREAD_REDUCED_COLOR_8: This loads an image in 8-bit-per-channel color
at one-eighth of its original resolution.

As an example, let's load a PNG file as a grayscale image (losing any color information in
the process), and then save it as a grayscale PNG image:

import cv2

grayImage = cv2.imread('MyPic.png', cv2.IMREAD_GRAYSCALE)
cv2.imwrite('MyPicGray.png', grayImage)

The path of an image, unless absolute, is relative to the working directory (the path from
which the Python script is run), so, in the preceding example, MyPic.png would have to be
in the working directory or the image would not be found. If you prefer to avoid
assumptions about the working directory, you can use absolute paths, such
as C:\Users\Joe\Pictures\MyPic.png on
Windows, /Users/Joe/Pictures/MyPic.png on
Mac, or /home/joe/pictures/MyPic.png on Linux.

The imwrite() function requires an image to be in the BGR or grayscale format with a
certain number of bits per channel that the output format can support. For example, the
BMP file format requires 8 bits per channel, while PNG allows either 8 or 16 bits per
channel.

Converting between an image and raw bytes
Conceptually, a byte is an integer ranging from 0 to 255. Throughout real-time graphic
applications today, a pixel is typically represented by one byte per channel, though other 
representations are also possible.



Handling Files, Cameras, and GUIs Chapter 2

[ 30 ]

An OpenCV image is a 2D or 3D array of the numpy.array type. An 8-bit grayscale image
is a 2D array containing byte values. A 24-bit BGR image is a 3D array, which also contains
byte values. We may access these values by using an expression such as image[0, 0] or
image[0, 0, 0]. The first index is the pixel's y coordinate or row, 0 being the top. The
second index is the pixel's x coordinate or column, 0 being the leftmost. The third index (if
applicable) represents a color channel. The array's three dimensions can be visualized in the
following Cartesian coordinate system:

For example, in an 8-bit grayscale image with a white pixel in the upper-left corner,
image[0, 0] is 255. For a 24-bit (8-bit-per-channel) BGR image with a blue pixel in the
upper-left corner, image[0, 0] is [255, 0, 0].

Provided that an image has 8 bits per channel, we can cast it to a standard Python
bytearray object, which is one-dimensional:

byteArray = bytearray(image)

Conversely, provided that bytearray contains bytes in an appropriate order, we can cast
and then reshape it to get a numpy.array type that is an image:

grayImage = numpy.array(grayByteArray).reshape(height, width)
bgrImage = numpy.array(bgrByteArray).reshape(height, width, 3)



Handling Files, Cameras, and GUIs Chapter 2

[ 31 ]

As a more complete example, let's convert bytearray that contains random bytes into a
grayscale image and a BGR image:

import cv2
import numpy
import os

# Make an array of 120,000 random bytes.
randomByteArray = bytearray(os.urandom(120000))
flatNumpyArray = numpy.array(randomByteArray)

# Convert the array to make a 400x300 grayscale image.
grayImage = flatNumpyArray.reshape(300, 400)
cv2.imwrite('RandomGray.png', grayImage)

# Convert the array to make a 400x100 color image.
bgrImage = flatNumpyArray.reshape(100, 400, 3)
cv2.imwrite('RandomColor.png', bgrImage)

Here, we use Python's standard os.urandom function to generate random
raw bytes, which we then convert into a NumPy array. Note that it is also
possible to generate a random NumPy array directly (and more
efficiently) using a statement such as numpy.random.randint(0, 256,
120000).reshape(300, 400). The only reason we use os.urandom is
to help to demonstrate conversion from raw bytes.

After running this script, we should have a pair of randomly generated images,
RandomGray.png and RandomColor.png, in the script's directory.

Here is an example of RandomGray.png (though yours will almost certainly differ since it
is random):



Handling Files, Cameras, and GUIs Chapter 2

[ 32 ]

Similarly, here is an example of RandomColor.png:

Now that we have a better understanding of how an image is formed from data, we can
start performing basic operations on it.

Accessing image data with numpy.array
We already know that the easiest (and most common) way to load an image in OpenCV is
to use the imread function. We also know that this will return an image, which is really an
array (either a 2D or 3D one, depending on the parameters you passed to imread).

The numpy.array class is greatly optimized for array operations, and it allows certain
kinds of bulk manipulations that are not available in a plain Python list. These kinds of
numpy.array type-specific operations come in handy for image manipulations in OpenCV.
However, let's explore image manipulations step by step, starting with a basic example. Say
you want to manipulate a pixel at coordinates (0, 0) in a BGR image and turn it into a white
pixel:

import cv2

img = cv2.imread('MyPic.png')
img[0, 0] = [255, 255, 255]

If you then save the modified image to file and view it, you will see a white dot in the top-
left corner of the image. Naturally, this modification is not very useful, but it begins to
show the possibilities. Now, let's leverage the capabilities of numpy.array to perform
transformations on an array much faster than we could do with a plain Python list.

Let's say that you want to change the blue value of a particular pixel, say, the pixel at
coordinates, (150, 120). The numpy.array type provides a handy method, item, which
takes three parameters: the x (or left) position, the y (or top) position, and the index within
the array at the (x, y) position (remember that in a BGR image, the data at a certain position
is a three-element array containing the B, G, and R values in this order) and returns the
value at the index position. Another method, itemset, sets the value of a particular
channel of a particular pixel to a specified value. itemset takes two arguments: a three-
element tuple (x, y, and index) and the new value.



Handling Files, Cameras, and GUIs Chapter 2

[ 33 ]

In the following example, we change the value of the blue channel at (150, 120) from its
current value to an arbitrary 255:

import cv2

img = cv2.imread('MyPic.png')
img.itemset((150, 120, 0), 255)  # Sets the value of a pixel's blue channel
print(img.item(150, 120, 0))  # Prints the value of a pixel's blue channel

For modifying a single element in an array, the itemset method is somewhat faster than
the indexing syntax that we saw in the first example in this section.

Again, modifying an element of an array does not do much in itself, but it does open a
world of possibilities. However, for performance reasons, this is only suitable for small
regions of interest. When you need to manipulate an entire image or a large region of
interest, it is advisable that you utilize either OpenCV's functions or NumPy's array slicing.
The latter allows you to specify a range of indices. Let's consider an example of using array
slicing to manipulate color channels. Setting all G (green) values of an image to 0 is as
simple as the following code:

import cv2

img = cv2.imread('MyPic.png')
img[:, :, 1] = 0

This piece of code performs a fairly significant operation and is easy to understand. The
relevant line is the last one, which basically instructs the program to take all pixels from all
rows and columns and set the green value (at index one of the three-element BGR array) to
0. If you display this image, you will notice a complete absence of green.

There are several interesting things we can do by accessing raw pixels with NumPy's array
slicing; one of them is defining regions of interests (ROI). Once the region is defined, we
can perform a number of operations. For example, we can bind this region to a
variable, define a second region, and assign the value of the first region to the second
(hence, copying a portion of the image over to another position in the image):

import cv2

img = cv2.imread('MyPic.png')
my_roi = img[0:100, 0:100]
img[300:400, 300:400] = my_roi



Handling Files, Cameras, and GUIs Chapter 2

[ 34 ]

It is important to make sure that the two regions correspond in terms of size. If not, NumPy
will (rightly) complain that the two shapes are mismatched.

Finally, we can access the properties of numpy.array, as shown in the following code:

import cv2

img = cv2.imread('MyPic.png')
print(img.shape)
print(img.size)
print(img.dtype)

These three properties are defined as follows:

shape: This is a tuple describing the shape of the array. For an image, it contains
(in order) the height, width, and—if the image is in color—the number of
channels. The length of the shape tuple is a useful way to determine whether an
image is grayscale or color. For a grayscale image, we have len(shape) == 2,
and for a color image, len(shape) == 3.
size: This is the number of elements in the array. In the case of a grayscale
image, this is the same as the number of pixels. In the case of a BGR image, it is
three times the number of pixels because each pixel is represented by three
elements (B, G, and R).
dtype: This is the datatype of the array's elements. For an 8-bit-per-channel
image, the datatype is numpy.uint8.

All in all, it is strongly advised that you familiarize yourself with NumPy in general, and
numpy.array in particular, when working with OpenCV. This class is the foundation of
any image processing done with OpenCV in Python.

Reading/writing a video file
OpenCV provides the VideoCapture and VideoWriter classes, which support various 
video file formats. The supported formats vary depending on the operating system and the
build configuration of OpenCV, but normally it is safe to assume that the AVI format is
supported. Via its read method, a VideoCapture object may be polled for new frames
until it reaches the end of its video file. Each frame is an image in a BGR format.



Handling Files, Cameras, and GUIs Chapter 2

[ 35 ]

Conversely, an image may be passed to the write method of the VideoWriter class,
which appends the image to a file in VideoWriter. Let's look at an example that reads
frames from one AVI file and writes them to another with a YUV encoding:

import cv2

videoCapture = cv2.VideoCapture('MyInputVid.avi')
fps = videoCapture.get(cv2.CAP_PROP_FPS)
size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),
        int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
    'MyOutputVid.avi', cv2.VideoWriter_fourcc('I','4','2','0'),
    fps, size)

success, frame = videoCapture.read()
while success:  # Loop until there are no more frames.
    videoWriter.write(frame)
    success, frame = videoCapture.read()

The arguments to the constructor of the VideoWriter class deserve special attention. A
video's filename must be specified. Any preexisting file with this name is overwritten. A
video codec must also be specified. The available codecs may vary from system to system.
The supported options may include the following:

0: This option is an uncompressed raw video file. The file extension should
be .avi.
cv2.VideoWriter_fourcc('I','4','2','0'): This option is an
uncompressed YUV encoding, 4:2:0 chroma subsampled. This encoding is widely
compatible but produces large files. The file extension should be .avi.
cv2.VideoWriter_fourcc('P','I','M','1'): This option is MPEG-1. The
file extension should be .avi.
cv2.VideoWriter_fourcc('X','V','I','D'): This option is a relatively old
MPEG-4 encoding. It is a good option if you want to limit the size of the resulting
video. The file extension should be .avi.
cv2.VideoWriter_fourcc('M','P','4','V'): This option is another
relatively old MPEG-4 encoding. It is a good option if you want to limit the size
of the resulting video. The file extension should be .mp4.



Handling Files, Cameras, and GUIs Chapter 2

[ 36 ]

cv2.VideoWriter_fourcc('X','2','6','4'): This option is a relatively
new MPEG-4 encoding. It may be the best option if you want to limit the size of
the resulting video. The file extension should be .mp4.
cv2.VideoWriter_fourcc('T','H','E','O'): This option is Ogg Vorbis.
The file extension should be .ogv.
cv2.VideoWriter_fourcc('F','L','V','1'): This option is a Flash video.
The file extension should be .flv.

A frame rate and frame size must be specified too. Since we are copying from another
video, these properties can be read from the get method of the VideoCapture class.

Capturing camera frames
A stream of camera frames is represented by a VideoCapture object too. However, for a
camera, we construct a VideoCapture object by passing the camera's device index instead
of a video's filename. Let's consider the following example, which captures 10 seconds of
video from a camera and writes it to an AVI file. The code is similar to the previous
section's sample (which was captured from a video file instead of a camera) but changes are
marked in bold:

import cv2

cameraCapture = cv2.VideoCapture(0)
fps = 30  # An assumption
size = (int(cameraCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),
        int(cameraCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(
    'MyOutputVid.avi', cv2.VideoWriter_fourcc('I','4','2','0'),
    fps, size)

success, frame = cameraCapture.read()
numFramesRemaining = 10 * fps - 1 # 10 seconds of frames
while success and numFramesRemaining > 0:
    videoWriter.write(frame)
    success, frame = cameraCapture.read()
    numFramesRemaining -= 1



Handling Files, Cameras, and GUIs Chapter 2

[ 37 ]

For some cameras on certain systems,
cameraCapture.get(cv2.CAP_PROP_FRAME_WIDTH) and
cameraCapture.get(cv2.CAP_PROP_FRAME_HEIGHT) may return
inaccurate results. To be more certain of the actual image dimensions, you
can first capture a frame and then get its height and width with code such
as h, w = frame.shape[:2]. Occasionally, you might even encounter a
camera that yields a few bad frames with unstable dimensions before it
starts yielding good frames with stable dimensions. If you are concerned
about guarding against this kind of quirk, you may want to read and
ignore a few frames at the start of a capture session.

Unfortunately, in most cases, the get method of VideoCapture does not return an 
accurate value for the camera's frame rate; it typically returns 0. The official documentation
at
http://docs.opencv.org/modules/highgui/doc/reading_and_writing_images_and_video

.html warns of the following:

"Value 0 is returned when querying a property that is not supported by the backend used
by the VideoCapture instance.

Note
Reading / writing properties involves many layers. Some unexpected result might happens
[sic] along this chain.
VideoCapture -> API Backend -> Operating System -> Device
Driver -> Device Hardware

The returned value might be different from what really is used by the device or it could be
encoded using device-dependent rules (for example, steps or percentage). Effective behavior
depends from [sic] device driver and the API backend."

To create an appropriate VideoWriter class for the camera, we have to either make an
assumption about the frame rate (as we did in the preceding code) or measure it using a
timer. The latter approach is better and we will cover it later in this chapter.

The number of cameras and their order is, of course, system-dependent. Unfortunately,
OpenCV does not provide any means of querying the number of cameras or their
properties. If an invalid index is used to construct a VideoCapture class, the
VideoCapture class will not yield any frames; its read method will return (False,
None). To avoid trying to retrieve frames from a VideoCapture object that was not opened
correctly, you may want to first call the VideoCapture.isOpened method, which returns
a Boolean.

https://docs.opencv.org/master/d8/dfe/classcv_1_1VideoCapture.html#aa6480e6972ef4c00d74814ec841a2939
https://docs.opencv.org/master/d8/dfe/classcv_1_1VideoCapture.html#aa6480e6972ef4c00d74814ec841a2939


Handling Files, Cameras, and GUIs Chapter 2

[ 38 ]

The read method is inappropriate when we need to synchronize either a set of cameras or a
multihead camera such as a stereo camera. Then, we use the grab and retrieve methods
instead. For a set of two cameras, we can use code similar to the following:

success0 = cameraCapture0.grab()
success1 = cameraCapture1.grab()
if success0 and success1:
    frame0 = cameraCapture0.retrieve()
    frame1 = cameraCapture1.retrieve()

Displaying an image in a window
One of the most basic operations in OpenCV is displaying an image in a window. This can
be done with the imshow function. If you come from any other GUI framework
background, you might think it sufficient to call imshow to display an image. However, in
OpenCV, the window is drawn (or re-drawn) only when you call another function,
waitKey. The latter function pumps the window's event queue (allowing various events
such as drawing to be handled), and it returns the keycode of any key that the user may
have typed within a specified timeout. To some extent, this rudimentary design simplifies
the task of developing demos that use video or webcam input; at least the developer has
manual control over the capture and display of new frames.

Here is a very simple sample script to read an image from a file and display it:

import cv2
import numpy as np

img = cv2.imread('my-image.png')
cv2.imshow('my image', img)
cv2.waitKey()
cv2.destroyAllWindows()

The imshow function takes two parameters: the name of the window in which we want to
display the image and the image itself. We will talk about waitKey in more detail in the
next section, Displaying camera frames in a window.

The aptly named destroyAllWindows function disposes of all of the windows created by
OpenCV.



Handling Files, Cameras, and GUIs Chapter 2

[ 39 ]

Displaying camera frames in a window
OpenCV allows named windows to be created, redrawn, and destroyed using the
namedWindow, imshow, and destroyWindow functions. Also, any window may capture
keyboard input via the waitKey function and mouse input via the
setMouseCallback function. Let's look at an example where we show the frames captured
from a live camera:

import cv2

clicked = False
def onMouse(event, x, y, flags, param):
    global clicked
    if event == cv2.EVENT_LBUTTONUP:
        clicked = True

cameraCapture = cv2.VideoCapture(0)
cv2.namedWindow('MyWindow')
cv2.setMouseCallback('MyWindow', onMouse)

print('Showing camera feed. Click window or press any key to stop.')
success, frame = cameraCapture.read()
while success and cv2.waitKey(1) == -1 and not clicked:
    cv2.imshow('MyWindow', frame)
    success, frame = cameraCapture.read()

cv2.destroyWindow('MyWindow')
cameraCapture.release()

The argument for waitKey is a number of milliseconds to wait for keyboard input. By
default, it is 0, which is a special value meaning infinity. The return value is either -1
(meaning that no key has been pressed) or an ASCII keycode, such as 27 for Esc. For a list
of ASCII keycodes, refer to http://www.asciitable.com/. Also, note that Python provides
a standard function, ord, which can convert a character into its ASCII keycode. For
example, ord('a') returns 97.

Again, note that OpenCV's window functions and waitKey are interdependent. OpenCV
windows are only updated when waitKey is called. Conversely, waitKey only captures
input when an OpenCV window has focus.

http://www.asciitable.com/


Handling Files, Cameras, and GUIs Chapter 2

[ 40 ]

The mouse callback passed to setMouseCallback should take five arguments, as seen in
our code sample. The callback's param argument is set as an optional third argument to
setMouseCallback. By default, it is 0. The callback's event argument is one of the
following actions:

cv2.EVENT_MOUSEMOVE: This event refers to mouse movement.
cv2.EVENT_LBUTTONDOWN: This event refers to the left button going down when
it is pressed.
cv2.EVENT_RBUTTONDOWN: This event refers to the right button going
down when it is pressed.
cv2.EVENT_MBUTTONDOWN: This event refers to the middle button going
down when it is pressed.
cv2.EVENT_LBUTTONUP: This event refers to the left button coming back up
when it is released.
cv2.EVENT_RBUTTONUP: This event refers to the right button coming back
up when it is released.
cv2.EVENT_MBUTTONUP: This event refers to the middle button coming back
up when it is released.
cv2.EVENT_LBUTTONDBLCLK: This event refers to the left button being double-
clicked.
cv2.EVENT_RBUTTONDBLCLK: This event refers to the right button being double-
clicked.
cv2.EVENT_MBUTTONDBLCLK: This event refers to the middle button being
double-clicked.

The mouse callback's flags argument may be some bitwise combination of the following
events:

cv2.EVENT_FLAG_LBUTTON: This event refers to the left button being pressed.
cv2.EVENT_FLAG_RBUTTON: This event refers to the right button being pressed.
cv2.EVENT_FLAG_MBUTTON: This event refers to the middle button being
pressed.
cv2.EVENT_FLAG_CTRLKEY: This event refers to the Ctrl key being pressed.
cv2.EVENT_FLAG_SHIFTKEY: This event refers to the Shift key being pressed.
cv2.EVENT_FLAG_ALTKEY: This event refers to the Alt key being pressed.



Handling Files, Cameras, and GUIs Chapter 2

[ 41 ]

Unfortunately, OpenCV does not provide any means of manually handling window events.
For example, we cannot stop our application when a window's close button is clicked. Due
to OpenCV's limited event handling and GUI capabilities, many developers prefer to
integrate it with other application frameworks. Later in this chapter, in the Cameo – an
object-oriented design section, we will design an abstraction layer to help to integrate
OpenCV with any application framework.

Project Cameo (face tracking and image
manipulation)
OpenCV is often studied through a cookbook approach that covers a lot of algorithms, but
nothing about high-level application development. To an extent, this approach is
understandable because OpenCV's potential applications are so diverse. OpenCV is used in
a wide variety of applications, such as photo/video editors, motion-controlled games, a
robot's AI, or psychology experiments where we log participants' eye movements. Across
these varied use cases, can we truly study a useful set of abstractions?

The book's authors believe we can, and the sooner we start creating abstractions, the better.
We will structure many of our OpenCV examples around a single application, but, at each
step, we will design a component of this application to be extensible and reusable.

We will develop an interactive application that performs face tracking and image
manipulations on camera input in real time. This type of application covers a broad range
of OpenCV's functionality and challenges us to create an efficient, effective implementation.

Specifically, our application will merge faces in real time. Given two streams of camera
input (or, optionally, prerecorded video input), the application will superimpose faces from
one stream atop faces in the other. Filters and distortions will be applied to give this
blended scene a unified look and feel. Users should have the experience of being engaged
in a live performance where they enter another environment and persona. This type of user
experience is popular in amusement parks such as Disneyland.

In such an application, users would immediately notice flaws, such as a low frame rate or
inaccurate tracking. To get the best results, we will try several approaches using
conventional imaging and depth imaging.

We will call our application Cameo. A cameo (in jewelry) is a small portrait of a person or
(in film) a very brief role played by a celebrity.



Handling Files, Cameras, and GUIs Chapter 2

[ 42 ]

Cameo – an object-oriented design
Python applications can be written in a purely procedural style. This is often done with
small applications, such as our basic I/O scripts, discussed previously. However, from now
on, we will often use an object-oriented style because it promotes modularity and
extensibility.

From our overview of OpenCV's I/O functionality, we know that all images are similar,
regardless of their source or destination. No matter how we obtain a stream of images or
where we send it as output, we can apply the same application-specific logic to each frame
in this stream. Separation of I/O code and application code becomes especially convenient
in an application, such as Cameo, which uses multiple I/O streams.

We will create classes called CaptureManager and WindowManager as high-level
interfaces to I/O streams. Our application code may use CaptureManager to read new
frames and, optionally, to dispatch each frame to one or more outputs, including a still
image file, a video file, and a window (via a WindowManager class). A WindowManager
class lets our application code handle a window and events in an object-oriented style.

Both CaptureManager and WindowManager are extensible. We could make
implementations that do not rely on OpenCV for I/O.

Abstracting a video stream with
managers.CaptureManager
As we have seen, OpenCV can capture, show, and record a stream of images from either a
video file or camera, but there are some special considerations in each case. Our
CaptureManager class abstracts some of the differences and provides a higher-level
interface to dispatch images from the capture stream to one or more outputs—a still image
file, video file, or window.

A CaptureManager object is initialized with a VideoCapture object and
has enterFrame and exitFrame methods that should typically be called on every iteration
of an application's main loop. Between a call to enterFrame and exitFrame, the
application may (any number of times) set a channel property and get a frame property.
The channel property is initially 0 and only multihead cameras use other values. The
frame property is an image corresponding to the current channel's state when
enterFrame was called.



Handling Files, Cameras, and GUIs Chapter 2

[ 43 ]

A CaptureManager class also has the writeImage, startWritingVideo, and
stopWritingVideo methods that may be called at any time. Actual file writing is
postponed until exitFrame. Also, during the exitFrame method, frame may be shown in
a window, depending on whether the application code provides a WindowManager class
either as an argument to the constructor of CaptureManager or by setting
the previewWindowManager property.

If the application code manipulates frame, the manipulations are reflected in recorded files
and in the window. A CaptureManager class has a constructor argument and property
called shouldMirrorPreview, which should be True if we want frame to be mirrored
(horizontally flipped) in the window but not in recorded files. Typically, when facing a
camera, users prefer a live camera feed to be mirrored.

Recall that a VideoWriter object needs a frame rate, but OpenCV does not provide any
reliable way to get an accurate frame rate for a camera. The CaptureManager class works
around this limitation by using a frame counter and Python's standard time.time function
to estimate the frame rate if necessary. This approach is not foolproof. Depending on frame
rate fluctuations and the system-dependent implementation of time.time, the accuracy of
the estimate might still be poor in some cases. However, if we deploy to unknown
hardware, it is better than just assuming that the user's camera has a particular frame rate.

Let's create a file called managers.py, which will contain our implementation of
CaptureManager. This implementation turns out to be quite long, so we will look at it in
several pieces:

First, let's add imports and a constructor, as follows:1.

import cv2
import numpy
import time

class CaptureManager(object):
    def __init__(self, capture, previewWindowManager = None,
                 shouldMirrorPreview = False):
        self.previewWindowManager = previewWindowManager
        self.shouldMirrorPreview = shouldMirrorPreview
        self._capture = capture
        self._channel = 0
        self._enteredFrame = False
        self._frame = None
        self._imageFilename = None
        self._videoFilename = None
        self._videoEncoding = None



Handling Files, Cameras, and GUIs Chapter 2

[ 44 ]

        self._videoWriter = None
        self._startTime = None
        self._framesElapsed = 0
        self._fpsEstimate = None

Next, let's add the following getter and setter methods for the properties2.
of CaptureManager:

    @property
    def channel(self):
        return self._channel
    @channel.setter
    def channel(self, value):
        if self._channel != value:
            self._channel = value
            self._frame = None
    @property
    def frame(self):
        if self._enteredFrame and self._frame is None:
            _, self._frame = self._capture.retrieve(
                self._frame, self.channel)
        return self._frame
    @property
    def isWritingImage(self):
        return self._imageFilename is not None
    @property
    def isWritingVideo(self):
        return self._videoFilename is not None

Note that most of the member variables are nonpublic, as denoted by the
underscore prefix in variable names, such as self._enteredFrame. These
nonpublic variables relate to the state of the current frame and any file-writing
operations. As discussed previously, the application code only needs to configure
a few things, which are implemented as constructor arguments and settable 
public properties: the camera channel, the window manager, and the option to
mirror the camera preview.



Handling Files, Cameras, and GUIs Chapter 2

[ 45 ]

This book assumes a certain level of familiarity with Python; however, if you are
getting confused by those @ annotations (for example, @property), refer to the
Python documentation about decorators, a built-in feature of the language that
allows the wrapping of a function by another function, normally used to apply
user-defined behavior in several places of an application. Specifically, you can
find relevant documentation at https://docs.python.org/3/reference/
compound_stmts.html#grammar-token-decorator.

Python does not enforce the concept of nonpublic member variables, but
in cases where the developer intends a variable to be treated as nonpublic,
you will often see the single-underscore prefix (_) or double-underscore
prefix (__). The single-underscore prefix is just a convention, indicating
that the variable should be treated as protected (accessed only within the
class and its subclasses). The double-underscore prefix actually causes the
Python interpreter to rename the variable, such that
MyClass.__myVariable becomes MyClass._MyClass__myVariable.
This is called name mangling (quite appropriately). By convention, such a
variable should be treated as private (accessed only within the class, and
not its subclasses). The same prefixes, with the same significance, can be
applied to methods as well as variables.

Continuing with our implementation, let's add the enterFrame method to3.
managers.py:

    def enterFrame(self):
        """Capture the next frame, if any."""
        # But first, check that any previous frame was exited.
        assert not self._enteredFrame, \
            'previous enterFrame() had no matching exitFrame()'
        if self._capture is not None:
            self._enteredFrame = self._capture.grab()

Note that the implementation of enterFrame only grabs (synchronizes) a frame,
whereas actual retrieval from a channel is postponed to a subsequent reading of
the frame variable.

Next, let's add the exitFrame method to managers.py:4.

    def exitFrame(self):
        """Draw to the window. Write to files. Release the
        frame."""

        # Check whether any grabbed frame is retrievable.
        # The getter may retrieve and cache the frame.

https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator
https://docs.python.org/3/reference/compound_stmts.html#grammar-token-decorator


Handling Files, Cameras, and GUIs Chapter 2

[ 46 ]

        if self.frame is None:
            self._enteredFrame = False
            return

        # Update the FPS estimate and related variables.
        if self._framesElapsed == 0:
            self._startTime = time.time()
        else:
            timeElapsed = time.time() - self._startTime
            self._fpsEstimate = self._framesElapsed / timeElapsed
        self._framesElapsed += 1

        # Draw to the window, if any.
        if self.previewWindowManager is not None:
            if self.shouldMirrorPreview:
                mirroredFrame = numpy.fliplr(self._frame)
                self.previewWindowManager.show(mirroredFrame)
            else:
                self.previewWindowManager.show(self._frame)

        # Write to the image file, if any.
        if self.isWritingImage:
            cv2.imwrite(self._imageFilename, self._frame)
            self._imageFilename = None

        # Write to the video file, if any.
        self._writeVideoFrame()

        # Release the frame.
        self._frame = None
        self._enteredFrame = False

The implementation of exitFrame takes the image from the current channel,
estimates a frame rate, shows the image via the window manager (if any), and
fulfills any pending requests to write the image to files.

Several other methods also pertain to file writing. Let's add the following5.
implementations of public methods named writeImage, startWritingVideo,
and stopWritingVideo to managers.py:

    def writeImage(self, filename):
        """Write the next exited frame to an image file."""
        self._imageFilename = filename
    def startWritingVideo(
            self, filename,
            encoding = cv2.VideoWriter_fourcc('M','J','P','G')):
        """Start writing exited frames to a video file."""



Handling Files, Cameras, and GUIs Chapter 2

[ 47 ]

        self._videoFilename = filename
        self._videoEncoding = encoding
    def stopWritingVideo(self):
        """Stop writing exited frames to a video file."""
        self._videoFilename = None
        self._videoEncoding = None
        self._videoWriter = None

The preceding methods simply update the parameters for file-writing operations,
whereas the actual writing operations are postponed to the next call
of exitFrame.

Earlier in this section, we saw that exitFrame calls a helper method6.
named _writeVideoFrame. Let's add the following implementation
of _writeVideoFrame to managers.py:

    def _writeVideoFrame(self):
        if not self.isWritingVideo:
            return
        if self._videoWriter is None:
            fps = self._capture.get(cv2.CAP_PROP_FPS)
            if fps <= 0.0:
                # The capture's FPS is unknown so use an estimate.
                if self._framesElapsed < 20:
                    # Wait until more frames elapse so that the
                    # estimate is more stable.
                    return
                else:
                    fps = self._fpsEstimate
            size = (int(self._capture.get(
                        cv2.CAP_PROP_FRAME_WIDTH)),
                    int(self._capture.get(
                        cv2.CAP_PROP_FRAME_HEIGHT)))
            self._videoWriter = cv2.VideoWriter(
                self._videoFilename, self._videoEncoding,
                fps, size)
        self._videoWriter.write(self._frame)

The preceding method creates or appends to a video file in a manner that should
be familiar from our earlier scripts (refer to the Reading/writing a video file section,
earlier in this chapter). However, in situations where the frame rate is unknown,
we skip some frames at the start of the capture session so that we have time to
build up an estimate of the frame rate.



Handling Files, Cameras, and GUIs Chapter 2

[ 48 ]

This concludes our implementation of CaptureManager. Although it relies on
VideoCapture, we could make other implementations that do not use OpenCV for input.
For example, we could make a subclass that is instantiated with a socket connection, whose
byte stream could be parsed as a stream of images. Also, we could make a subclass that
uses a third-party camera library with different hardware support than what OpenCV
provides. However, for Cameo, our current implementation is sufficient.

Abstracting a window and keyboard with
managers.WindowManager
As we have seen, OpenCV provides functions that cause a window to be created, be
destroyed, show an image, and process events. Rather than being methods of a window
class, these functions require a window's name to pass as an argument. Since this interface
is not object-oriented, it is arguably inconsistent with OpenCV's general style. Also, it is
unlikely to be compatible with other window-or event-handling interfaces that we might
eventually want to use instead of OpenCV's.

For the sake of object orientation and adaptability, we abstract this functionality into a
WindowManager class with the createWindow, destroyWindow, show, and
processEvents methods. As a property, WindowManager has a function object called
keypressCallback, which (if it is not None) is called from processEvents in response to
any keypress. The keypressCallback object must be a function that takes a single
argument, specifically an ASCII keycode.

Let's add an implementation of WindowManager to managers.py. The implementation
begins with the following class declaration and __init__ method:

class WindowManager(object):
    def __init__(self, windowName, keypressCallback = None):
        self.keypressCallback = keypressCallback
        self._windowName = windowName
        self._isWindowCreated = False



Handling Files, Cameras, and GUIs Chapter 2

[ 49 ]

The implementation continues with the following methods to manage the life cycle of the
window and its events:

    @property
    def isWindowCreated(self):
        return self._isWindowCreated
    def createWindow(self):
        cv2.namedWindow(self._windowName)
        self._isWindowCreated = True
    def show(self, frame):
        cv2.imshow(self._windowName, frame)
    def destroyWindow(self):
        cv2.destroyWindow(self._windowName)
        self._isWindowCreated = False
    def processEvents(self):
        keycode = cv2.waitKey(1)
        if self.keypressCallback is not None and keycode != -1:
            self.keypressCallback(keycode)

Our current implementation only supports keyboard events, which will be sufficient for
Cameo. However, we could modify WindowManager to support mouse events, too. For
example, the class interface could be expanded to include a mouseCallback property (and
optional constructor argument,) but could otherwise remain the same. With an event
framework other than OpenCV's, we could support additional event types in the same way
by adding callback properties.

Applying everything with cameo.Cameo
Our application is represented by the Cameo class with two methods: run and onKeypress.
On initialization, a Cameo object creates a WindowManager object with onKeypress as a
callback, as well as a CaptureManager object using a camera (specifically, a
cv2.VideoCapture object) and the same WindowManager object. When run is called, the
application executes a main loop in which frames and events are processed.



Handling Files, Cameras, and GUIs Chapter 2

[ 50 ]

As a result of event processing, onKeypress may be called. The spacebar causes a
screenshot to be taken, Tab causes a screencast (a video recording) to start/stop, and Esc
causes the application to quit.

In the same directory as managers.py, let's create a file called cameo.py, where we will
implement the Cameo class:

The implementation begins with the following import statements and __init__1.
method:

import cv2
from managers import WindowManager, CaptureManager

class Cameo(object):
    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                            self.onKeypress)
        self._captureManager = CaptureManager(
            cv2.VideoCapture(0), self._windowManager, True)

Next, let's add the following implementation of the run() method:2.

    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            frame = self._captureManager.frame
            if frame is not None:
                # TODO: Filter the frame (Chapter 3).
                pass
            self._captureManager.exitFrame()
            self._windowManager.processEvents()

To complete the Cameo class implementation, here is the onKeypress() method:3.

    def onKeypress(self, keycode):
        """Handle a keypress.
        space -> Take a screenshot.
        tab -> Start/stop recording a screencast.
        escape -> Quit.
        """
        if keycode == 32: # space
            self._captureManager.writeImage('screenshot.png')
        elif keycode == 9: # tab
            if not self._captureManager.isWritingVideo:
                self._captureManager.startWritingVideo(



Handling Files, Cameras, and GUIs Chapter 2

[ 51 ]

                    'screencast.avi')
            else:
                self._captureManager.stopWritingVideo()
        elif keycode == 27: # escape
            self._windowManager.destroyWindow()

Finally, let's add a __main__ block that instantiates and runs Cameo, as follows:4.

if __name__=="__main__":
    Cameo().run()

When running the application, note that the live camera feed is mirrored, while screenshots
and screencasts are not. This is the intended behavior, as we pass True for
shouldMirrorPreview when initializing the CaptureManager class.

Here is a screenshot of Cameo, showing a window (with the title Cameo) and the current
frame from a camera:

So far, we do not manipulate the frames in any way except to mirror them for preview. We
will start to add more interesting effects in Chapter 3, Processing Images with OpenCV.



Handling Files, Cameras, and GUIs Chapter 2

[ 52 ]

Summary
By now, we should have an application that displays a camera feed, listens for keyboard
input, and (on command) records a screenshot or screencast. We are ready to extend the
application by inserting some image-filtering code (Chapter 3, Processing Images with
OpenCV) between the start and end of each frame. Optionally, we are also ready to integrate
other camera drivers or application frameworks besides the ones supported by OpenCV.

We also possess the knowledge to manipulate images as NumPy arrays. This forms the
perfect foundation for our next topic, filtering images.



3
Processing Images with

OpenCV
Sooner or later, when working with images, you will find you need to alter them: be it by
applying artistic filters, extrapolating certain sections, blending two images, or whatever
else your mind can conjure. This chapter presents some techniques that you can use to alter
images. By the end of it, you should be able to perform tasks such as sharpening an image,
marking the contours of subjects, and detecting crosswalks using a line segment
detector. Specifically, our discussion and code samples will cover the following topics:

Converting images between different color models
Understanding the importance of frequencies and the Fourier transform in image
processing
Applying high-pass filters (HPFs), low-pass filters (LPFs), edge detection filters,
and custom convolution filters
Detecting and analyzing contours, lines, circles, and other geometric shapes
Writing classes and functions that encapsulate the implementation of a filter

Technical requirements
This chapter uses Python, OpenCV, NumPy, and SciPy. Please refer to Chapter 1, Setting
Up OpenCV, for installation instructions.

The completed code for this chapter can be found in this book's GitHub repository, https:/
/github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-
Third-Edition, in the chapter03 folder. The sample images are also in this book's GitHub
repository, in the images folder.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Processing Images with OpenCV Chapter 3

[ 54 ]

Converting images between different color
models
OpenCV implements literally hundreds of formulas that pertain to the conversion of color
models. Some color models are commonly used by input devices such as cameras, while
other models are commonly used for output devices such as televisions, computer displays,
and printers. In between input and output, when we apply computer vision techniques to
images, we will typically work with three kinds of color models: grayscale, blue-green-
red (BGR), and hue-saturation-value (HSV). Let's go over these briefly:

Grayscale is a model that reduces color information by translating it into shades
of gray or brightness. This model is extremely useful for the intermediate
processing of images in problems where brightness information alone is
sufficient, such as face detection. Typically, each pixel in a grayscale image is
represented by a single 8-bit value, ranging from 0 for black to 255 for white.
BGR is the blue-green-red color model, in which each pixel has a triplet of values
representing the blue, green, and red components or channels of the pixel's color.
Web developers, and anyone who works with computer graphics, will be
familiar with a similar definition of colors, except with the reverse channel order,
red-green-blue (RGB). Typically, each pixel in a BGR image is represented by a
triplet of 8-bit values, such as [0, 0, 0] for black, [255, 0, 0] for blue, [0,
255, 0] for green, [0, 0, 255] for red, and [255, 255, 255] for white.
The HSV model uses a different triplet of channels. Hue is the color's tone,
saturation is its intensity, and value represents its brightness.

By default, OpenCV uses the BGR color model (with 8 bits per channel) to represent any
image that it loads from a file or captures from a camera.

Now that we have defined the color models we will use, let's consider how the default
model might differ from our intuitive understanding of color.



Processing Images with OpenCV Chapter 3

[ 55 ]

Light is not paint 
For newcomers to the BGR color space, it might seem that things do not add up properly:
for example, the (0, 255, 255) triplet (no blue, full green, and full red) produces the
color yellow. If you have an artistic background, you won't even need to pick up paints and
brushes to know that green and red paint mix together into a muddy shade of brown.
However, the color models that are used in computing are called additive models and they
deal with lights. Lights behave differently from paints (which follow a subtractive color
model), and since software runs on a computer whose medium is a monitor that emits
light, the color model of reference is the additive one.

Exploring the Fourier transform
Much of the processing you apply to images and videos in OpenCV involves the concept of
the Fourier transform in some capacity. Joseph Fourier was an 18th-century French
mathematician who discovered and popularized many mathematical concepts. He studied
the physics of heat, and the mathematics of all things that can be represented by waveform
functions. In particular, he observed that all waveforms are just the sum of simple sinusoids
of different frequencies.

In other words, the waveforms you observe all around you are the sum of other
waveforms. This concept is incredibly useful when manipulating images because it allows
us to identify regions in images where a signal (such as the values of image pixels) changes
a lot, and also regions where the change is less dramatic. We can then arbitrarily mark these
regions as noise or regions of interests, background or foreground, and so on. These are the
frequencies that make up the original image, and we have the power to separate them to
make sense of the image and extrapolate interesting data.

OpenCV implements a number of algorithms that enable us to process
images and make sense of the data contained in them, and these are also
reimplemented in NumPy to make our life even easier. NumPy has a fast
Fourier transform (FFT) package, which contains the fft2 method. This
method allows us to compute a discrete Fourier transform (DFT) of the
image.



Processing Images with OpenCV Chapter 3

[ 56 ]

Let's examine the concept of the magnitude spectrum of an image using the Fourier
transform. The magnitude spectrum of an image is another image that provides a
representation of the original image in terms of its changes. Think of it as taking an image
and dragging all the brightest pixels to the center. Then, you gradually work your way out
to the border where all the darkest pixels have been pushed. Immediately, you will be able
to see how many light and dark pixels are contained in your image and the percentage of
their distribution.

The Fourier transform is the basis of many algorithms that are used for common image
processing operations, such as edge detection or line and shape detection.

Before examining these in detail, let's take a look at two concepts that – in conjunction with
the Fourier transform – form the foundation of the aforementioned processing operations:
HPFs and LPFs.

HPFs and LPFs
An HPF is a filter that examines a region of an image and boosts the intensity of certain
pixels based on the difference in the intensity of the surrounding pixels.

Take, for example, the following kernel:

[[ 0,    -0.25,  0   ],
[-0.25,  1,    -0.25],
[ 0,    -0.25,  0   ]]

A kernel is a set of weights that are applied to a region in a source image
to generate a single pixel in the destination image. For example, if we call
an OpenCV function with a parameter to specify a kernel size or ksize of
7, this implies that 49 (7 x 7) source pixels are considered when generating
each destination pixel. We can think of a kernel as a piece of frosted glass
moving over the source image and letting a diffused blend of the source's
light pass through.

The preceding kernel gives us the average difference in intensity between the central pixel
and all its immediate horizontal neighbors. If a pixel stands out from the surrounding
pixels, the resulting value will be high. This type of kernel represents a so-called high-boost
filter, which is a type of HPF, and it is particularly effective in edge detection.



Processing Images with OpenCV Chapter 3

[ 57 ]

Note that the values in an edge detection kernel typically sum up to 0. We
will cover this in the Custom kernels – getting convoluted section of this
chapter.

Let's go through an example of applying an HPF to an image:

import cv2
import numpy as np
from scipy import ndimage

kernel_3x3 = np.array([[-1, -1, -1],
                       [-1, 8, -1],
                       [-1, -1, -1]])

kernel_5x5 = np.array([[-1, -1, -1, -1, -1],
                       [-1, 1, 2, 1, -1],
                       [-1, 2, 4, 2, -1],
                       [-1, 1, 2, 1, -1],
                       [-1, -1, -1, -1, -1]])

img = cv2.imread("../images/statue_small.jpg", 0)

k3 = ndimage.convolve(img, kernel_3x3)
k5 = ndimage.convolve(img, kernel_5x5)

blurred = cv2.GaussianBlur(img, (17,17), 0)
g_hpf = img - blurred

cv2.imshow("3x3", k3)
cv2.imshow("5x5", k5)
cv2.imshow("blurred", blurred)
cv2.imshow("g_hpf", g_hpf)
cv2.waitKey()
cv2.destroyAllWindows()



Processing Images with OpenCV Chapter 3

[ 58 ]

After the initial imports, we define a 3x3 kernel and a 5x5 kernel, and then we load the
image in grayscale. After that, we want to convolve the image with each of the kernels.
There are several library functions available for such a purpose. NumPy provides
the convolve function; however, it only accepts one-dimensional arrays. Although the
convolution of multidimensional arrays can be achieved with NumPy, it would be a bit
complex. SciPy's ndimage module provides another convolve function, which supports
multidimensional arrays. Finally, OpenCV provides a filter2D function (for convolution
with 2D arrays) and a sepFilter2D function (for the special case of a 2D kernel that can be
decomposed into two one-dimensional kernels). The preceding code sample illustrates the
ndimage.convolve function. We will use the cv2.filter2D function in other samples in
the Custom kernels – getting convoluted section of this chapter.

Our script proceeds by applying two HPFs with the two convolution kernels we defined.
Finally, we also implement a different method of obtaining an HPF by applying a LPF and
calculating the difference between the original image. Let's see how each filter looks. As
input, we start with the following photograph:



Processing Images with OpenCV Chapter 3

[ 59 ]

Now, here is a screenshot of the output:

You will notice that the differential HPF, as shown in the bottom-right photograph, yields
the best edge-finding result. Since this differential method involves a low-pass filter, let's
elaborate on that type of filter. If an HPF boosts the intensity of a pixel, given its difference
with neighbors, a LPF will smoothen the pixel if the difference from surrounding pixels is
lower than a certain threshold. This is used in denoising and blurring. For example, one of
the most popular blurring/smoothening filters, the Gaussian blur, is a low-pass filter that
attenuates the intensity of high-frequency signals. The result of the Gaussian blur is shown
in the lower-left photograph.



Processing Images with OpenCV Chapter 3

[ 60 ]

Now that we have tried these filters in a basic example, let's consider how to integrate them
into a larger, more interactive application.

Creating modules
Let's revisit the Cameo project that we started in Chapter 2, Handling Files, Cameras, and
GUIs. We can modify Cameo so that it applies filters to the captured images in real time. As
in the case of our CaptureManager and WindowManager classes, our filters should be
reusable outside of Cameo. Thus, we should separate the filters into their own Python
module or file.

Let's create a file called filters.py in the same directory as cameo.py. We need the
following import statements in filters.py:

import cv2
import numpy
import utils

Let's also create a file called utils.py in the same directory. It should contain the
following import statements:

import cv2
import numpy
import scipy.interpolate

We will be adding filter functions and classes to filters.py, while more general-purpose
math functions will go in utils.py.

Edge detection
Edges play a major role in both human and computer vision. We, as humans, can easily
recognize many object types and their pose just by seeing a backlit silhouette or a rough
sketch. Indeed, when art emphasizes edges and poses, it often seems to convey the idea of
an archetype, such as Rodin's The Thinker or Joe Shuster's Superman. Software, too, can
reason about edges, poses, and archetypes. We will discuss these kinds of reasoning in later
chapters.



Processing Images with OpenCV Chapter 3

[ 61 ]

OpenCV provides many edge-finding filters, including Laplacian, Sobel, and Scharr.
These filters are supposed to turn non-edge regions into black and turn edge regions into
white or saturated colors. However, they are prone to misidentifying noise as edges. This
flaw can be mitigated by blurring an image before trying to find its edges. OpenCV also
provides many blurring filters, including blur (a simple average), medianBlur, and
GaussianBlur. The arguments for the edge-finding and blurring filters vary but always
include ksize, an odd whole number that represents the width and height (in pixels) of a
filter's kernel.

For blurring, let's use medianBlur, which is effective in removing digital video noise,
especially in color images. For edge-finding, let's use Laplacian, which produces bold
edge lines, especially in grayscale images. After applying medianBlur, but before applying
Laplacian, we should convert the image from BGR into grayscale.

Once we have the result of Laplacian, we can invert it to get black edges on a white
background. Then, we can normalize it (so that its values range from 0 to 1) and then
multiply it with the source image to darken the edges. Let's implement this approach in
filters.py:

def strokeEdges(src, dst, blurKsize = 7, edgeKsize = 5):
    if blurKsize >= 3:
        blurredSrc = cv2.medianBlur(src, blurKsize)
        graySrc = cv2.cvtColor(blurredSrc, cv2.COLOR_BGR2GRAY)
    else:
        graySrc = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
    cv2.Laplacian(graySrc, cv2.CV_8U, graySrc, ksize = edgeKsize)
    normalizedInverseAlpha = (1.0 / 255) * (255 - graySrc)
    channels = cv2.split(src)
    for channel in channels:
        channel[:] = channel * normalizedInverseAlpha
    cv2.merge(channels, dst)

Note that we allow kernel sizes to be specified as arguments for
strokeEdges.

The blurKsize argument is used as ksize for medianBlur, while edgeKsize is used as
ksize for Laplacian. With a typical webcam, a blurKsize value of 7 and an edgeKsize
value of 5 might produce the most pleasing effect. Unfortunately, medianBlur is expensive
with a large ksize argument, such as 7.



Processing Images with OpenCV Chapter 3

[ 62 ]

If you encounter performance problems when running strokeEdges, try
decreasing the blurKsize value. To turn off the blur effect, set it to a
value of less than 3.

We will see the effect of this filter a little later in this chapter, after we have integrated it
into Cameo in the Modifying the application section.

Custom kernels – getting convoluted
As we have just seen, many of OpenCV's predefined filters use a kernel. Remember that a
kernel is a set of weights that determines how each output pixel is calculated from a
neighborhood of input pixels. Another term for a kernel is a convolution matrix. It mixes
up or convolves the pixels in a region. Similarly, a kernel-based filter may be called a
convolution filter.

OpenCV provides a very versatile filter2D() function, which applies any kernel or
convolution matrix that we specify. To understand how to use this function, let's learn
about the format of a convolution matrix. It is a 2D array with an odd number of rows and
columns. The central element corresponds to a pixel of interest, while the other elements
correspond to the neighbors of this pixel. Each element contains an integer or floating-point
value, which is a weight that gets applied to an input pixel's value. Consider this example:

kernel = numpy.array([[-1, -1, -1],
                      [-1,  9, -1],
                      [-1, -1, -1]])

Here, the pixel of interest has a weight of 9 and its immediate neighbors each have a weight
of -1. For the pixel of interest, the output color will be nine times its input color, minus the
input colors of all eight adjacent pixels. If the pixel of interest is already a bit different from
its neighbors, this difference becomes intensified. The effect is that the image looks sharper
as the contrast between the neighbors is increased.

Continuing with our example, we can apply this convolution matrix to a source and
destination image, respectively, as follows:

cv2.filter2D(src, -1, kernel, dst)



Processing Images with OpenCV Chapter 3

[ 63 ]

The second argument specifies the per-channel depth of the destination image (such as
cv2.CV_8U for 8 bits per channel). A negative value (such as to one being used here) means
that the destination image has the same depth as the source image.

For color images, note that filter2D() applies the kernel equally to each
channel. To use different kernels on different channels, we would also
have to use the split() and merge() functions.

Based on this simple example, let's add two classes to filters.py. One class,
VConvolutionFilter, will represent a convolution filter in general. A subclass,
SharpenFilter, will represent our sharpening filter specifically. Let's edit filters.py so
that we can implement these two new classes, as follows:

class VConvolutionFilter(object):
    """A filter that applies a convolution to V (or all of BGR)."""
    def __init__(self, kernel):
        self._kernel = kernel
    def apply(self, src, dst):
        """Apply the filter with a BGR or gray source/destination."""
        cv2.filter2D(src, -1, self._kernel, dst)

class SharpenFilter(VConvolutionFilter):
    """A sharpen filter with a 1-pixel radius."""
    def __init__(self):
        kernel = numpy.array([[-1, -1, -1],
                              [-1,  9, -1],
                              [-1, -1, -1]])
        VConvolutionFilter.__init__(self, kernel)

Note that the weights sum up to 1. This should be the case whenever we want to leave the
image's overall brightness unchanged. If we modify a sharpening kernel slightly so that its
weights sum up to 0 instead, we'll have an edge detection kernel that turns edges white
and non-edges black. For example, let's add the following edge detection filter to
filters.py:

class FindEdgesFilter(VConvolutionFilter):
    """An edge-finding filter with a 1-pixel radius."""
    def __init__(self):
        kernel = numpy.array([[-1, -1, -1],
                              [-1,  8, -1],
                              [-1, -1, -1]])
        VConvolutionFilter.__init__(self, kernel)



Processing Images with OpenCV Chapter 3

[ 64 ]

Next, let's make a blur filter. Generally, for a blur effect, the weights should sum up to 1
and should be positive throughout the neighborhood. For example, we can take a simple
average of the neighborhood as follows:

class BlurFilter(VConvolutionFilter):
    """A blur filter with a 2-pixel radius."""
    def __init__(self):
        kernel = numpy.array([[0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04],
                              [0.04, 0.04, 0.04, 0.04, 0.04]])
        VConvolutionFilter.__init__(self, kernel)

Our sharpening, edge detection, and blur filters use kernels that are highly symmetric.
Sometimes, though, kernels with less symmetry produce an interesting effect. Let's consider
a kernel that blurs on one side (with positive weights) and sharpens on the other (with
negative weights). It will produce a ridged or embossed effect. Here is an implementation
that we can add to filters.py:

class EmbossFilter(VConvolutionFilter):
    """An emboss filter with a 1-pixel radius."""
    def __init__(self):
        kernel = numpy.array([[-2, -1, 0],
                              [-1,  1, 1],
                              [ 0,  1, 2]])
        VConvolutionFilter.__init__(self, kernel)

This set of custom convolution filters is very basic. Indeed, it is more basic than OpenCV's
ready-made set of filters. However, with a bit of experimentation, you should be able to
write your own kernels that produce a unique look.

Modifying the application
Now that we have high-level functions and classes for several filters, it is trivial to apply
any of them to the captured frames in Cameo. Let's edit cameo.py and add the lines that
appear in bold in the following excerpts. First, we need to add our filters module to our
list of imports, as follows:

import cv2
import filters
from managers import WindowManager, CaptureManager



Processing Images with OpenCV Chapter 3

[ 65 ]

Now, we need to initialize any filter objects we will use. An example of this can be seen in
the following modified __init__ method:

class Cameo(object):
    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                             self.onKeypress)
        self._captureManager = CaptureManager(
            cv2.VideoCapture(0), self._windowManager, True)
        self._curveFilter = filters.BGRPortraCurveFilter()

Finally, we need to modify the run method in order to apply our choice of filters. Refer to
the following example:

    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            frame = self._captureManager.frame
            if frame is not None:
                filters.strokeEdges(frame, frame)
                self._curveFilter.apply(frame, frame)
            self._captureManager.exitFrame()
            self._windowManager.processEvents()

    # ... The rest is the same as in Chapter 2

Here, we have applied two effects: stroking the edges and emulating the colors of a brand
of photo film called Kodak Portra. Feel free to modify the code to apply any filters you like.

For details about how to implement the Portra film emulation effect, refer
to Appendix A, Bending Color Space with a Curves Filter. 



Processing Images with OpenCV Chapter 3

[ 66 ]

Here is a screenshot from Cameo with stroked edges and Portra-like colors:

Now that we have sampled some of the visual effects that we can achieve with simple
filters, let's consider how we can use other simple functions for analytical purposes –
specifically, the detection of edges and shapes.

Edge detection with Canny
OpenCV offers a handy function called Canny (after the algorithm's inventor, John F.
Canny), which is very popular not only because of its effectiveness, but also because of the
simplicity of its implementation in an OpenCV program since it is a one-liner:

import cv2
import numpy as np

img = cv2.imread("../images/statue_small.jpg", 0)
cv2.imwrite("canny.jpg", cv2.Canny(img, 200, 300))  # Canny in one line!
cv2.imshow("canny", cv2.imread("canny.jpg"))
cv2.waitKey()
cv2.destroyAllWindows()



Processing Images with OpenCV Chapter 3

[ 67 ]

The result is a very clear identification of the edges:

The Canny edge detection algorithm is complex but also quite interesting. It is a five-step
process:

Denoise the image with a Gaussian filter.1.
Calculate the gradients.2.
Apply non-maximum suppression (NMS) on the edges. Basically, this means3.
that the algorithm selects the best edges from a set of overlapping edges. We'll
discuss the concept of NMS in detail in Chapter 7, Building Custom Object
Detectors.
Apply a double threshold to all the detected edges to eliminate any false4.
positives.
Analyze all the edges and their connection to each other to keep the real edges5.
and discard the weak ones.



Processing Images with OpenCV Chapter 3

[ 68 ]

After finding Canny edges, we can do further analysis of the edges in order to determine
whether they match a common shape, such as a line or a circle. The Hough transform is one
algorithm that uses Canny edges in this way. We will experiment with it later in this
chapter, in the Detecting lines, circles, or other shapes section.

For now, we will examine other ways of analyzing shapes, not based on edge detection but
rather on the concept of finding a blob of similar pixels.

Contour detection
A vital task in computer vision is contour detection. We want to detect contours or outlines
of subjects contained in an image or video frame, not only as an end in itself but also as a
step toward other operations. These operations are, namely, computing bounding
polygons, approximating shapes, and generally calculating regions of interest (ROIs).
ROIs considerably simplify interaction with image data because a rectangular region in
NumPy is easily defined with an array slice. We will be using contour detection and ROIs a
lot when we explore the concepts of object detection (including face detection) and object
tracking.

Let's familiarize ourselves with the API with an example:

import cv2
import numpy as np

img = np.zeros((200, 200), dtype=np.uint8)
img[50:150, 50:150] = 255

ret, thresh = cv2.threshold(img, 127, 255, 0)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE,
                                       cv2.CHAIN_APPROX_SIMPLE)
color = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.drawContours(color, contours, -1, (0,255,0), 2)
cv2.imshow("contours", color)
cv2.waitKey()
cv2.destroyAllWindows()

First, we create an empty black image that is 200 x 200 pixels in size. Then, we place a white
square in the center of it by utilizing array's ability to assign values on a slice.



Processing Images with OpenCV Chapter 3

[ 69 ]

Then, we threshold the image and call the findContours function. This function has three
parameters: the input image, the hierarchy type, and the contour approximation method.
The second parameter specifies the type of hierarchy tree returned by the function. One of
the supported values is cv2.RETR_TREE, which tells the function to retrieve the entire
hierarchy of external and internal contours. These relationships may matter if we are
searching for smaller objects (or smaller regions) inside larger objects (or larger regions). If
you only want to retrieve the most external contours, use cv2.RETR_EXTERNAL. This may
be a good choice in cases where the objects appear on a plain background and we do not
care about finding objects within objects.

Referring back to the code sample, note that the findContours function returns two
elements: the contours and their hierarchy. We use the contours to draw green outlines on
the color version of the image. Finally, we display the image.

The result is a white square with its contour drawn in green – a Spartan scene, but effective
in demonstrating the concept! Let's move on to more meaningful examples.

Bounding box, minimum area rectangle, and
minimum enclosing circle
Finding the contours of a square is a simple task; irregular, skewed, and rotated shapes
bring out the full potential of OpenCV's cv2.findContours function. Let's take a look at
the following image:



Processing Images with OpenCV Chapter 3

[ 70 ]

In a real-life application, we would be most interested in determining the bounding box of
the subject, its minimum enclosing rectangle, and its enclosing circle. The
cv2.findContours function, in conjunction with a few other OpenCV utilities, makes this
very easy to accomplish. First, the following code reads an image from a file, converts it 
into grayscale, applies a threshold to the grayscale image, and finds the contours in the
thresholded image:

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))

ret, thresh = cv2.threshold(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), 127,
255, cv2.THRESH_BINARY)
contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

Now, for each contour, we can find and draw the bounding box, the minimum enclosing
rectangle, and the minimum enclosing circle, as shown in the following code:

for c in contours:
    # find bounding box coordinates
    x,y,w,h = cv2.boundingRect(c)
    cv2.rectangle(img, (x,y), (x+w, y+h), (0, 255, 0), 2)

    # find minimum area
    rect = cv2.minAreaRect(c)
    # calculate coordinates of the minimum area rectangle
    box = cv2.boxPoints(rect)
    # normalize coordinates to integers
    box = np.int0(box)
    # draw contours
    cv2.drawContours(img, [box], 0, (0,0, 255), 3)

    # calculate center and radius of minimum enclosing circle
    (x, y), radius = cv2.minEnclosingCircle(c)
    # cast to integers
    center = (int(x), int(y))
    radius = int(radius)
    # draw the circle
    img = cv2.circle(img, center, radius, (0, 255, 0), 2)



Processing Images with OpenCV Chapter 3

[ 71 ]

Finally, we can use the following code to draw the contours and show the image in a 
window until the user presses a key:

cv2.drawContours(img, contours, -1, (255, 0, 0), 1)
cv2.imshow("contours", img)

cv2.waitKey()
cv2.destroyAllWindows()

Note that contour detection is performed on a thresholded image, so color information is
already lost at this stage, but we draw on the original color image and then show the results
in color.

Let's go back and look more closely at the steps we performed in the preceding for loop,
where we process each detected contour. First, we calculate a simple bounding box:

    x,y,w,h = cv2.boundingRect(c)

This is a pretty straightforward conversion of contour information into the (x, y)
coordinates, height, and width of the rectangle. Drawing this rectangle is an easy task and
can be done using the following code:

    cv2.rectangle(img, (x,y), (x+w, y+h), (0, 255, 0), 2)

Next, we calculate the minimum-area rectangle enclosing the subject:

    rect = cv2.minAreaRect(c)
    box = cv2.boxPoints(rect)
    box = np.int0(box)

The mechanism being used here is particularly interesting: OpenCV does not have a
function to calculate the coordinates of the minimum rectangle vertices directly from the
contour information. Instead, we calculate the minimum rectangle area, and then calculate
the vertices of this rectangle. Note that the calculated vertices are floats, but pixels are
accessed with integers (you can't access a portion of a pixel for the purposes of OpenCV's
drawing functions), so we need to perform this conversion. Next, we draw the box, which
gives us the perfect opportunity to introduce the cv2.drawContours function:

    cv2.drawContours(img, [box], 0, (0,0, 255), 3)



Processing Images with OpenCV Chapter 3

[ 72 ]

This function – like all of OpenCV's drawing functions – modifies the original image. Note
that it takes an array of contours in its second parameter so that you can draw a number of
contours in a single operation. Therefore, if you have a single set of points representing a
contour polygon, you need to wrap these points in an array, exactly like we did with our
box in the preceding example. The third parameter of this function specifies the index of the
contours array that we want to draw: a value of -1 will draw all contours; otherwise, a
contour at the specified index in the contours array (the second parameter) will be drawn.

Most drawing functions take the color of the drawing (as a BGR tuple) and its thickness (in
pixels) as the last two parameters.

The last bounding contour we're going to examine is the minimum enclosing circle:

    (x, y), radius = cv2.minEnclosingCircle(c)
    center = (int(x), int(y))
    radius = int(radius)
    img = cv2.circle(img, center, radius, (0, 255, 0), 2)

The only peculiarity of the cv2.minEnclosingCircle function is that it returns a two-
element tuple, of which the first element is a tuple itself, representing the coordinates of the
circle's center, and the second element is the radius of this circle. After converting all these
values into integers, drawing the circle is quite a trivial operation.

When we apply the preceding code to the original image, the final result looks like this:



Processing Images with OpenCV Chapter 3

[ 73 ]

This is a good result insofar as the circle and rectangles fit tightly around the object.
Obviously, though, the object is not circular or rectangular, so we could achieve a tighter fit
with various other shapes. Let's do that next.

Convex contours and the Douglas-Peucker
algorithm
When working with contours, we may encounter subjects with diverse shapes, including 
convex ones. A convex shape is one where there are no two points within this shape whose
connecting line goes outside the perimeter of the shape itself.

The first facility that OpenCV offers to calculate the approximate bounding polygon of a
shape is cv2.approxPolyDP. This function takes three parameters:

A contour.
An epsilon value representing the maximum discrepancy between the original
contour and the approximated polygon (the lower the value, the closer the
approximated value will be to the original contour).
A Boolean flag. If it is True, it signifies that the polygon is closed.

The epsilon value is of vital importance to obtain a useful contour, so let's understand what
it represents. Epsilon is the maximum difference between the approximated polygon's
perimeter and the original contour's perimeter. The smaller this difference is, the more the
approximated polygon will be similar to the original contour.

You may ask yourself why we need an approximate polygon when we have a contour that
is already a precise representation. The answer to this is that a polygon is a set of straight
lines, and many computer vision tasks become simpler if we can define polygons so that
they delimit regions for further manipulation and processing.

Now that we know what an epsilon is, we need to obtain contour perimeter information as
a reference value. This can be obtained with the cv2.arcLength function of OpenCV:

    epsilon = 0.01 * cv2.arcLength(cnt, True)
    approx = cv2.approxPolyDP(cnt, epsilon, True)

Effectively, we're instructing OpenCV to calculate an approximated polygon whose
perimeter can only differ from the original contour by an epsilon ratio – specifically, 1% of
the original arc length.



Processing Images with OpenCV Chapter 3

[ 74 ]

OpenCV also offers a cv2.convexHull function for obtaining processed contour
information for convex shapes. This is a straightforward one-line expression:

    hull = cv2.convexHull(cnt)

Let's combine the original contour, approximated polygon contour, and the convex hull
into one image to observe the differences between them. To simplify things, we will draw
the contours on top of a black background so that the original subject is not visible but its
contours are:

As you can see, the convex hull surrounds the entire subject, the approximated polygon is
the innermost polygon shape, and in between the two is the original contour, mainly
composed of arcs.

By combining all the preceding steps into one script that loads a file, finds contours,
approximates the contours as a polygon, finds a convex hull, and displays a visualization,
we have the following code:

import cv2
import numpy as np

img = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))



Processing Images with OpenCV Chapter 3

[ 75 ]

ret, thresh = cv2.threshold(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),
                            127, 255, cv2.THRESH_BINARY)

contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                                  cv2.CHAIN_APPROX_SIMPLE)

black = np.zeros_like(img)
for cnt in contours:
    epsilon = 0.01 * cv2.arcLength(cnt,True)
    approx = cv2.approxPolyDP(cnt,epsilon,True)
    hull = cv2.convexHull(cnt)
    cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2)
    cv2.drawContours(black, [approx], -1, (255, 255, 0), 2)
    cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)

cv2.imshow("hull", black)
cv2.waitKey()
cv2.destroyAllWindows()

Code like this works well on simple images, in which we have only one or a few objects,
and only a few colors that are easily separated by thresholds. Unfortunately, color
thresholding and contour detection are less effective on complex images that contain
several objects or multicolored objects. For these more challenging cases, we will have to
look at more complex algorithms.

Detecting lines, circles, and other shapes
Detecting edges and finding contours are not only common and important tasks in their
own right; they also form the basis of other complex operations. Line and shape detection
walk hand-in-hand with edge and contour detection, so let's examine how OpenCV
implements these.

The theory behind line and shape detection has its foundation in a technique called the
Hough transform, invented by Richard Duda and Peter Hart, who extended (generalized)
the work that was done by Paul Hough in the early 1960s. Let's take a look at OpenCV's
API for Hough transforms.



Processing Images with OpenCV Chapter 3

[ 76 ]

Detecting lines
First of all, let's detect some lines. We can do this with either the HoughLines function or
the HoughLinesP function. The former uses the standard Hough transform, while the latter
uses the probabilistic Hough transform (hence the P in the name). The probabilistic version
is so-called because it only analyzes a subset of the image's points and estimates the
probability that these points all belong to the same line. This implementation is an
optimized version of the standard Hough transform; it is less computationally intensive
and executes faster. HoughLinesP is implemented so that it returns the two endpoints of
each detected line segment, whereas HoughLines is implemented so that it returns a
representation of each line as a single point and an angle, without information about
endpoints.

Let's take a look at a very simple example:

import cv2
import numpy as np

img = cv2.imread('lines.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 120)
minLineLength = 20
maxLineGap = 5
lines = cv2.HoughLinesP(edges, 1, np.pi/180.0, 20,
                        minLineLength, maxLineGap)
for x1, y1, x2, y2 in lines[0]:
    cv2.line(img, (x1, y1), (x2, y2), (0,255,0),2)

cv2.imshow("edges", edges)
cv2.imshow("lines", img)
cv2.waitKey()
cv2.destroyAllWindows()

The crucial part of this simple script – aside from the HoughLines function call – is setting
the minimum line length (shorter lines will be discarded) and the maximum line gap,
which is the maximum size of a gap in a line before the two segments start being
considered as separate lines.

Also, note that the HoughLines function takes a single channel binary image, which is
processed through the Canny edge detection filter. Canny is not a strict requirement, but an
image that has been denoised and only represents edges is the ideal source for a Hough
transform, so you will find this to be a common practice.



Processing Images with OpenCV Chapter 3

[ 77 ]

The parameters of HoughLinesP are as follows:

The image.
The resolution or step size to use when searching for lines. rho is the positional
step size in pixels, while theta is the rotational step size in radians. For example,
if we specify rho=1 and theta=np.pi/180.0, we search for lines that are
separated by as little as 1 pixel and 1 degree.
The threshold, which represents the threshold below which a line is discarded.
The Hough transform works with a system of bins and votes, with each bin
representing a line, so if a candidate line has at least the threshold number of
votes, it is retained; otherwise, it is discarded.
minLineLength and maxLineGap, which we mentioned previously.

Detecting circles
OpenCV also has a function for detecting circles, called HoughCircles. It works in a very
similar fashion to HoughLines, but where minLineLength and maxLineGap were the
parameters to be used to discard or retain lines, HoughCircles has a minimum distance
between a circle's centers, as well as minimum and maximum values for a circle's radius.
Here is the obligatory example:

import cv2
import numpy as np

planets = cv2.imread('planet_glow.jpg')
gray_img = cv2.cvtColor(planets, cv2.COLOR_BGR2GRAY)
gray_img = cv2.medianBlur(gray_img, 5)

circles = cv2.HoughCircles(gray_img,cv2.HOUGH_GRADIENT,1,120,
                           param1=100,param2=30,minRadius=0,maxRadius=0)

circles = np.uint16(np.around(circles))

for i in circles[0,:]:
    # draw the outer circle
    cv2.circle(planets,(i[0],i[1]),i[2],(0,255,0),2)
    # draw the center of the circle
    cv2.circle(planets,(i[0],i[1]),2,(0,0,255),3)
cv2.imwrite("planets_circles.jpg", planets)
cv2.imshow("HoughCirlces", planets)
cv2.waitKey()
cv2.destroyAllWindows()



Processing Images with OpenCV Chapter 3

[ 78 ]

Here is a visual representation of the result:

Detecting other shapes
OpenCV's implementations of the Hough transform are limited to detecting lines and
circles; however, we already implicitly explored shape detection in general when we talked
about approxPolyDP. This function allows for the approximation of polygons, so if your
image contains polygons, they will be accurately detected through the combined use
of cv2.findContours and cv2.approxPolyDP.



Processing Images with OpenCV Chapter 3

[ 79 ]

Summary
At this point, you should have gained a good understanding of color models, the Fourier
transform, and several kinds of filters that have been made available by OpenCV to process
images.

You should also be proficient in detecting edges, lines, circles, and shapes in general.
Additionally, you should be able to find contours and exploit the information they provide
about the subjects contained in an image. These concepts are complementary to the next
chapter's topics – namely, the segmentation of an image according to depth and estimating
the distance of a subject in an image.



4
Depth Estimation and

Segmentation
This chapter begins by showing you how to use data from a depth camera to identify
foreground and background regions, such that we can limit an effect to only the foreground
or only the background.

After covering depth cameras, the chapter proceeds with other techniques for depth
estimation, namely, stereo imaging and structure from motion (SfM). The latter techniques
do not require a depth camera; instead, they rely on capturing images of a subject from
multiple perspectives with one or more ordinary cameras.

Finally, the chapter covers segmentation techniques that allow us to extract foreground
objects from a single image. By the end of the chapter, you will learn several ways to
segment an image into multiple depths or multiple objects. Specifically, we will cover the
following topics:

Using a depth camera to capture depth maps, point cloud maps, disparity maps,
images based on visible light, and images based on infrared light
Converting 10-bit images to 8-bit images
Converting a disparity map into a mask that differentiates between foreground
and background regions
Using either stereo imaging or SfM to create a disparity map
Using the GrabCut algorithm to segment an image into foreground and
background regions
Using the Watershed algorithm to segment an image into multiple regions that
might be different objects



Depth Estimation and Segmentation Chapter 4

[ 81 ]

Technical requirements
This chapter uses Python, OpenCV, and NumPy. Some parts of the chapter use a depth
camera, such as Asus Xtion PRO, along with OpenCV's optional support for OpenNI 2 in
order to capture images from such a camera. Please refer back to Chapter 1, Setting Up
OpenCV, for installation instructions. The chapter also uses Matplotlib to make charts. To
install matplotlib, run $ pip install matplotlib (or $ pip3 install matplotlib,
depending on your environment).

The completed code for this chapter can be found in this book's GitHub
repository, https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-
with-Python-Third-Edition, in the chapter04 folder. Sample images are in the repository
in the images folder.

Creating modules
To help us build an interactive demo of a depth camera, we will reuse much of the Cameo
project that we developed in Chapter 2, Handling Files, Cameras, and GUIs, and Chapter 3,
Processing Images with OpenCV. As you will recall, we designed Cameo to support various
kinds of input, so we can easily adapt it to support depth cameras in particular. We will
add code that analyzes the depth layers in an image in order to find the main region, such
as the face of a person sitting in front of the camera. Having found this region, we will paint
everything else black. This type of effect is sometimes used in chat applications to hide the
background so that users have more privacy.

Some of the code to manipulate depth-camera data will be reusable outside Cameo.py, so
we should separate it into a new module. Let's create a depth.py file in the same directory
as Cameo.py. We need the following import statement in depth.py:

import numpy

Our application will use depth-related functionality, so let's add the following import
statement to Cameo.py:

import depth

We will also modify CaptureManager.py, but we do not need to add any new import
statements to it.

Now that we have taken a brief look at the modules that we will create or modify, let's go
deeper into the subject of depth.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Depth Estimation and Segmentation Chapter 4

[ 82 ]

Capturing frames from a depth camera
Back in Chapter 2, Handling Files, Cameras, and GUIs, we discussed the concept that a
computer can have multiple video capture devices and each device can have multiple
channels. Suppose a given device is a depth camera. Each channel might correspond to a
different lens and sensor. Also, each channel might correspond to different kinds of data,
such as a normal color image versus a depth map. OpenCV, via its optional support for
OpenNI 2, allows us to request any of the following channels from a depth camera (though
a given camera might support only some of these channels):

cv2.CAP_OPENNI_DEPTH_MAP: This is a depth map—a grayscale image in which
each pixel value is the estimated distance from the camera to a surface.
Specifically, each pixel value is a 16-bit unsigned integer representing a depth
measurement in millimeters.
cv2.CAP_OPENNI_POINT_CLOUD_MAP: This is a point cloud map—a color image
in which each color corresponds to an x, y, or z spatial dimension. Specifically,
the channel yields a BGR image, where B is x (blue is right), G is y (green is up),
and R is z (red is deep), from the camera's perspective. The values are in meters.
cv2.CAP_OPENNI_DISPARITY_MAP or cv2.CAP_OPENNI_DISPARITY_MAP_32F:
These are disparity maps—grayscale images in which each pixel value is the
stereo disparity of a surface. To conceptualize stereo disparity, let's suppose we
overlay two images of a scene, shot from different viewpoints. The result would
be similar to seeing double. For points on any pair of twin objects in the scene,
we can measure the distance in pixels. This measurement is the stereo disparity.
Nearby objects exhibit greater stereo disparity than far-off objects. Thus, nearby
objects appear brighter in a disparity map. cv2.CAP_OPENNI_DISPARITY_MAP is
a disparity map with 8-bit unsigned integer values and
cv2.CAP_OPENNI_DISPARITY_MAP_32F is a disparity map with 32-bit floating-
point values.
cv2.CAP_OPENNI_VALID_DEPTH_MASK: This is a valid depth mask that shows 
whether the depth information at a given pixel is believed to be valid (shown by
a non-zero value) or invalid (shown by a value of zero). For example, if the depth
camera depends on an infrared illuminator (an infrared flash), depth information
is invalid in regions that are occluded (shadowed) from this light.
cv2.CAP_OPENNI_BGR_IMAGE: This is an ordinary BGR image from a camera
that captures visible light. Each pixel's B, G, and R values are unsigned 8-bit
integers.



Depth Estimation and Segmentation Chapter 4

[ 83 ]

cv2.CAP_OPENNI_GRAY_IMAGE: This is an ordinary monochrome image from a
camera that captures visible light. Each pixel value is an unsigned 8-bit integer.
cv2.CAP_OPENNI_IR_IMAGE: This is a monochrome image from a camera that 
captures infrared (IR) light, specifically the near infrared (NIR) part of the
spectrum. Each pixel value is an unsigned 16-bit integer. Typically, the camera
will not actually use this entire 16-bit range but, instead, just a portion of it such
as a 10-bit range; still, the data type is a 16-bit integer. Although NIR light is
invisible to the human eye, it is physically quite similar to red light. Thus, NIR
images from a camera do not necessarily look strange to a human being.
However, a typical depth camera not only captures NIR light, but also projects a
grid-like pattern of NIR lights for the benefit of the depth-finding algorithm.
Thus, we might see a recognizable face in the depth camera's NIR image, but the
face might be dotted with bright white lights.

Let's consider samples of some of these image types. The following screenshot shows a
point cloud map of a man sitting behind a sculpture of a cat:



Depth Estimation and Segmentation Chapter 4

[ 84 ]

Here is a disparity map of the same scene:

Finally, here is a valid depth mask of the now-familiar cat sculpture and man:

Next, let's consider how to use some of the channels from a depth camera in an interactive
application such as Cameo.



Depth Estimation and Segmentation Chapter 4

[ 85 ]

Converting 10-bit images to 8-bit
As we noted in the previous section, some of the channels of a depth camera use a range
larger than 8 bits for their data. A large range tends to be useful for computations, but
inconvenient for display, since most computer monitors are only capable of using an 8-bit
range, [0, 255], per channel.

OpenCV's cv2.imshow function re-scales and truncates the given input data in order to
convert the image for display. Specifically, if the input image's data type is unsigned 16-bit
or signed 32-bit integers, cv2.imshow divides the data by 256 and truncates it to the 8-bit
unsigned integer range, [0, 255]. If the input image's data type is 32-bit or 64-bit floating-
point numbers, cv2.imshow assumes that the data's range is [0.0, 1.0], so it multiplies the
data by 255 and truncates it to the 8-bit unsigned integer range, [0, 255]. By re-scaling the
data, cv2.imshow is relying on its naive assumptions about the original scale. These
assumptions will be wrong in some cases. For example, if an image's data type is 16-bit
unsigned integers, but the actual data range is 10-bit unsigned integers, [0, 1023], then the
image would look very dark if we relied on cv2.imshow to convert it.

Consider the following example of an image of an eye, captured with a 10-bit grayscale
camera. On the left-hand side, we see the result of a correct conversion from the 10-bit scale
to the 8-bit scale. On the right-hand side, we see the result of an incorrect conversion, based
on a faulty assumption that the image uses a 16-bit scale:

The improperly converted image looks all black because our assumption about the scale
was off by a huge amount: 6 bits or a factor of 64. Such a mistake is possible if we rely on
cv2.imshow to perform conversions to the 8-bit scale automatically for us.



Depth Estimation and Segmentation Chapter 4

[ 86 ]

Of course, to avoid such problems, we can do our own image conversions and then pass the
resulting 8-bit image to cv2.imshow. Let's modify managers.py (one of our existing
scripts in the Cameo project) in order to provide an option to convert 10-bit images to 8-bit.
We will provide a shouldConvertBitDepth10To8 variable, which the developer can set
to True or False. The following code block (with changes in bold) shows how we initialize
this variable:

class CaptureManager(object):

    def __init__(self, capture, previewWindowManager = None,
                 shouldMirrorPreview = False,
                 shouldConvertBitDepth10To8 = True):

        self.previewWindowManager = previewWindowManager
        self.shouldMirrorPreview = shouldMirrorPreview
        self.shouldConvertBitDepth10To8 = \
                shouldConvertBitDepth10To8

        # ... The rest of the method is unchanged ...

Next, we will modify the frame property's getter to support the conversion. If
shouldConvertBitDepth10To8 is True, and the frame's datatype is 16-bit unsigned
integers, then we will assume the frame actually has a 10-bit range, which we will convert
to 8-bit. As part of the conversion, we will apply a right bit shift operation, >> 2, which
truncates the two least significant bits. This is equivalent to integer division by 4. Here is
the relevant code:

    @property
    def frame(self):
        if self._enteredFrame and self._frame is None:
            _, self._frame = self._capture.retrieve(
                    self._frame, self.channel)
            if self.shouldConvertBitDepth10To8 and \
                    self._frame is not None and \
                    self._frame.dtype == numpy.uint16:
                self._frame = (self._frame >> 2).astype(
                        numpy.uint8)
        return self._frame



Depth Estimation and Segmentation Chapter 4

[ 87 ]

With these modifications in place, we will be able to more easily manipulate and display
frames from some channels, notably cv2.CAP_OPENNI_IR_IMAGE. Next, though, let's look
at an example of a function that manipulates frames from the
cv2.CAP_OPENNI_DISPARITY_MAP and cv2.CAP_OPENNI_VALID_DEPTH_MASK channels
in order to create a mask that isolates one thing, such as the user's face. Afterwards, we will
consider how to use all these channels together in Cameo.

Creating a mask from a disparity map
Let's assume that a user's face, or some other object of interest, occupies most of the depth
camera's field of view. However, the image also contains some other content that is not of
interest. By analyzing the disparity map, we can tell that some pixels within the rectangle
are outliers—too near or too far to really be a part of the face or another object of interest.
We can make a mask to exclude these outliers. However, we should only apply this test
where the data is valid, as indicated by the valid depth mask.

Let's write a function to generate a mask whose values are 0 for the rejected regions of the
image and 255 for the accepted regions. This function should take a disparity map, valid
depth mask, and optionally a rectangle as arguments. If a rectangle is specified, we will
make a mask that is just the size of the specified region. This will be useful to us later in
Chapter 5, Detecting and Recognizing Faces, where we will work with a face detector that
finds bounding rectangles around faces. Let's call our createMedianMask function and
implement it in depth.py as follows:

def createMedianMask(disparityMap, validDepthMask, rect = None):
    """Return a mask selecting the median layer, plus shadows."""
    if rect is not None:
        x, y, w, h = rect
        disparityMap = disparityMap[y:y+h, x:x+w]
        validDepthMask = validDepthMask[y:y+h, x:x+w]
    median = numpy.median(disparityMap)
    return numpy.where((validDepthMask == 0) | \
                       (abs(disparityMap - median) < 12),
                       255, 0).astype(numpy.uint8)

To identify outliers in the disparity map, we first find the median using numpy.median,
which takes an array as an argument. If the array is of an odd length, median returns the
value that would lie in the middle of the array if the array were sorted. If the array is of an
even length, median returns the average of the two values that would be sorted nearest to
the middle of the array.



Depth Estimation and Segmentation Chapter 4

[ 88 ]

To generate a mask based on per-pixel Boolean operations, we use numpy.where with
three arguments. In the first argument, where takes an array whose elements are evaluated
for truth or falsity. An output array of the same dimensions is returned. Wherever an
element in the input array is True, the where function's second argument is assigned to the
corresponding element in the output array. Conversely, wherever an element in the input
array is False, the where function's third argument is assigned to the corresponding
element in the output array.

Our implementation treats a pixel as an outlier when it has a valid disparity value that
deviates from the median disparity value by 12 or more. We have chosen the value of 12
just by experimentation. Feel free to tweak this value later based on the results you
encounter when running Cameo with your particular camera setup.

Modifying the application
Let's open the Cameo.py file, which contains the Cameo class that we last modified in
Chapter 3, Processing Images with OpenCV. This class implements an application that works
well with regular cameras. We do not necessarily want to replace this class, but rather we
want to create a variant of it that changes the implementations of some methods in order to
work with depth cameras instead. For this purpose, we will make a subclass, which 
inherits some of the Cameo behaviors and overrides other behaviors. Let's call it a
CameoDepth subclass. Add the following line to Cameo.py (after the Cameo class and
before the __main__ code block) in order to declare CameoDepth as a subclass of Cameo:

class CameoDepth(Cameo):

We will override or reimplement the __init__ method in CameoDepth. Whereas Cameo
instantiates our CaptureManager class with a device index for a regular camera,
CameoDepth needs to use a device index for a depth camera. The latter can be
cv2.CAP_OPENNI2, which represents a device index for Microsoft Kinect, or
cv2.CAP_OPENNI2_ASUS, which represents a device index for Asus Xtion PRO or Occipital
Structure. The following code block shows a sample implementation of the __init__
method of CameoDepth (with differences from the __init__ method of Cameo in bold),
but you may want to modify it to uncomment the appropriate device index for your setup:

    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                            self.onKeypress)
        #device = cv2.CAP_OPENNI2 # uncomment for Kinect
        device = cv2.CAP_OPENNI2_ASUS # uncomment for Xtion or Structure
        self._captureManager = CaptureManager(



Depth Estimation and Segmentation Chapter 4

[ 89 ]

            cv2.VideoCapture(device), self._windowManager, True)
        self._curveFilter = filters.BGRPortraCurveFilter()

Similarly, we will override the run method in order to use several channels from the depth
camera. First, we will try to retrieve a disparity map, then a valid depth mask, and finally a
BGR color image. If no BGR image can be retrieved, this probably means that the depth
camera does not have any BGR sensor so, in this case, we will proceed to retrieve an
infrared grayscale image instead. The following code snippet shows the start of the run
method of CameoDepth:

    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            self._captureManager.enterFrame()
            self._captureManager.channel = cv2.CAP_OPENNI_DISPARITY_MAP
            disparityMap = self._captureManager.frame
            self._captureManager.channel = cv2.CAP_OPENNI_VALID_DEPTH_MASK
            validDepthMask = self._captureManager.frame
            self._captureManager.channel = cv2.CAP_OPENNI_BGR_IMAGE
            frame = self._captureManager.frame
            if frame is None:
                # Failed to capture a BGR frame.
                # Try to capture an infrared frame instead.
                self._captureManager.channel = cv2.CAP_OPENNI_IR_IMAGE
                frame = self._captureManager.frame

Having captured a disparity map, a valid depth mask, and either a BGR image or an
infrared grayscale image, the run method continues by calling the
depth.createMedianMask function that we implemented in the previous section, Creating
a mask from a disparity map. We pass the disparity map and valid depth mask to the latter
function and, in return, we receive a mask that is white in regions whose depth is close to
the median depth, and black in other regions. Wherever the mask is black (mask == 0), we
want to paint the BGR or infrared image black in order to obscure everything except the
main object in the image. Finally, for a BGR image, we want to apply the artistic filters that
we previously implemented in Chapter 3, Processing Images with OpenCV. The following
code completes the implementation of the CameoDepth run method:

            if frame is not None:

                # Make everything except the median layer black.
                mask = depth.createMedianMask(disparityMap, validDepthMask)
                frame[mask == 0] = 0

                if self._captureManager.channel == \
                        cv2.CAP_OPENNI_BGR_IMAGE:



Depth Estimation and Segmentation Chapter 4

[ 90 ]

                    # A BGR frame was captured.
                    # Apply filters to it.
                    filters.strokeEdges(frame, frame)
                    self._curveFilter.apply(frame, frame)

            self._captureManager.exitFrame()
            self._windowManager.processEvents()

CameoDepth does not need any other method implementations of its own; it inherits
appropriate implementations from its parent class or Cameo superclass.

Now, we simply need to modify the __main__ section of Cameo.py in order to run an
instance of the CameoDepth class instead of the Cameo class. Here is the relevant code:

if __name__=="__main__":
    #Cameo().run() # uncomment for ordinary camera
    CameoDepth().run() # uncomment for depth camera

Plug in a depth camera and then run the script. Move closer to or farther from the camera
until your face is visible, but the background goes black. The following screenshot was
taken with CameoDepth and an Asus Xtion PRO camera. We can see an infrared image of
one of the authors, Joseph Howse, who is brushing his teeth. The code has successfully
blacked out the background so the image does not reveal whether he is brushing his teeth
in a house, on a train, or in a tent. The mystery continues:



Depth Estimation and Segmentation Chapter 4

[ 91 ]

This is a good opportunity to consider the output of the createMedianMask function,
which we implemented in the previous section. If we visualize the regions where the mask
is 0 as black, and the regions where the mask is 1 as white, then the mask of Joseph Howse
brushing his teeth appears as follows:

The result is good, but not perfect. For example, on the right-hand side of the image (from
the viewer's perspective), the mask incorrectly includes a shadow region behind the hair,
and incorrectly excludes the shoulder. The latter problem could probably be solved by fine-
tuning the criteria that we used with numpy.where in the implementation of
createMedianMask.

If you are fortunate enough to have multiple depth cameras, try all of them to see how they
differ in terms of their support for color images, and their effectiveness in distinguishing
near and far layers. Also, try various objects and lighting conditions to see how they affect
(or do not affect) the infrared image. When you are satisfied with the result of your testing,
let's move on to other techniques for depth estimation. (We will return to depth cameras
again in subsequent chapters.)

Depth estimation with a normal camera
A depth camera is an impressive device, but not every developer or user has one and it has 
some limitations. Notably, a typical depth camera does not work well outdoors because the
infrared component of sunlight is much brighter than the camera's own infrared light
source. Blinded by the sun, the camera cannot see the infrared pattern that it normally uses
to estimate depth.



Depth Estimation and Segmentation Chapter 4

[ 92 ]

As an alternative, we can use one or more normal cameras and we can estimate relative
distances to objects based on triangulation from different camera perspectives. If we use
two cameras simultaneously, this approach is called stereo vision. If we use one camera,
but we move it over time to obtain different perspectives, this approach is called structure
from motion. Broadly, techniques for stereo vision are also helpful in SfM, but in SfM we
face additional problems if we are dealing with a moving subject. For this chapter's
purposes, let's assume that we are dealing with a stationary subject.

As many philosophers would agree, geometry is fundamental to our understanding of the
world. More to the point, epipolar geometry is the foundation of stereo vision. How does
epipolar geometry work? Conceptually, it traces imaginary lines from the camera to each
object in the image, then does the same on the second image, and calculates the distance to
an object based on the intersection of the lines corresponding to the same object. Here is a
representation of this concept:

Let's see how OpenCV applies epipolar geometry to calculate a disparity map. This will
enable us to segment the image into various layers of foreground and background. As
input, we need two images of the same subject taken from different points of view.

Like so many of our scripts, this one begins by importing NumPy and OpenCV:

import numpy as np
import cv2



Depth Estimation and Segmentation Chapter 4

[ 93 ]

We define initial values for several parameters of a stereo algorithm, as seen in the
following code:

minDisparity = 16
numDisparities = 192 - minDisparity
blockSize = 5
uniquenessRatio = 1
speckleWindowSize = 3
speckleRange = 3
disp12MaxDiff = 200
P1 = 600
P2 = 2400

With these parameters, we create an instance of OpenCV's cv2.StereoSGBM class. SGBM
stands for semiglobal block matching, which is an algorithm used for computing disparity
maps. Here is the code that initializes the object:

stereo = cv2.StereoSGBM_create(
    minDisparity = minDisparity,
    numDisparities = numDisparities,
    blockSize = blockSize,
    uniquenessRatio = uniquenessRatio,
    speckleRange = speckleRange,
    speckleWindowSize = speckleWindowSize,
    disp12MaxDiff = disp12MaxDiff,
    P1 = P1,
    P2 = P2
)

We also load two images from file:

imgL = cv2.imread('../images/color1_small.jpg')
imgR = cv2.imread('../images/color2_small.jpg')

We want to provide several sliders to enable a user to interactively adjust the parameters of
the algorithm that calculates the disparity map. Whenever a user adjusts any of the sliders,
we will update the parameters of the stereo algorithm by setting properties of the
StereoSGBM instance, and recalculate the disparity map by calling the compute method of
the StereoSGBM instance. Let's take a look at the implementation of the update function,
which is the callback function for the sliders:

def update(sliderValue = 0):

    stereo.setBlockSize(
        cv2.getTrackbarPos('blockSize', 'Disparity'))
    stereo.setUniquenessRatio(
        cv2.getTrackbarPos('uniquenessRatio', 'Disparity'))



Depth Estimation and Segmentation Chapter 4

[ 94 ]

    stereo.setSpeckleWindowSize(
        cv2.getTrackbarPos('speckleWindowSize', 'Disparity'))
    stereo.setSpeckleRange(
        cv2.getTrackbarPos('speckleRange', 'Disparity'))
    stereo.setDisp12MaxDiff(
        cv2.getTrackbarPos('disp12MaxDiff', 'Disparity'))

    disparity = stereo.compute(
        imgL, imgR).astype(np.float32) / 16.0

    cv2.imshow('Left', imgL)
    cv2.imshow('Right', imgR)
    cv2.imshow('Disparity',
               (disparity - minDisparity) / numDisparities)

Now, let's look at the code that creates a window and sliders:

cv2.namedWindow('Disparity')
cv2.createTrackbar('blockSize', 'Disparity', blockSize, 21,
                   update)
cv2.createTrackbar('uniquenessRatio', 'Disparity',
                   uniquenessRatio, 50, update)
cv2.createTrackbar('speckleWindowSize', 'Disparity',
                   speckleWindowSize, 200, update)
cv2.createTrackbar('speckleRange', 'Disparity',
                   speckleRange, 50, update)
cv2.createTrackbar('disp12MaxDiff', 'Disparity',
                   disp12MaxDiff, 250, update)

Note that we provide the update function as an argument to the cv2.createTrackbar
function so that update is called whenever a slider is adjusted. Next, we call update
manually to initialize the disparity map:

# Initialize the disparity map. Show the disparity map and images.
update()

When the user presses any key, we will close the window:

# Wait for the user to press any key.
# Meanwhile, update() will be called anytime the user moves a slider.
cv2.waitKey()

Let's review the functionality of this example. We take two images of the same subject and
calculate a disparity map, showing in brighter tones the points in the map that are closer to
the camera. The regions marked in black represent the disparities.



Depth Estimation and Segmentation Chapter 4

[ 95 ]

Here is the first image that we have used in this example:

This is the second one:



Depth Estimation and Segmentation Chapter 4

[ 96 ]

The user sees the original images, as well as a nice and quite easy-to-interpret disparity
map:



Depth Estimation and Segmentation Chapter 4

[ 97 ]

We have used many, but not all, of the parameters supported by StereoSGBM. The
OpenCV documentation provides the following descriptions of all the parameters:

Parameter Description from OpenCV Documentation

minDisparity
Minimum possible disparity value. Normally, it is zero, but sometimes
rectification algorithms can shift images so this parameter needs to be
adjusted accordingly.

numDisparities
Maximum disparity minus minimum disparity. The value is always
greater than zero. In the current implementation, this parameter must
be divisible by 16.

blockSize
Matched block size. It must be an odd number >=1 . Normally, it should
be somewhere in the 3-11 range.

P1
The first parameter controlling the disparity smoothness [see the
description of P2].

P2

The second parameter controlling the disparity smoothness. The larger
the values, the smoother the disparity. P1 is the penalty on the
disparity change by plus or minus 1 between neighbor pixels. P2 is the
penalty on the disparity change by more than 1 between neighbor
pixels. The algorithm requires P2 > P1. See the stereo_match.cpp
sample where some reasonably good P1 and P2 values are shown, such
as
8*number_of_image_channels*SADWindowSize*SADWindowSize

and
32*number_of_image_channels*SADWindowSize*SADWindowSize,
respectively.

disp12MaxDiff
Maximum allowed difference (in integer pixel units) in the left-right
disparity check. Set it to a non-positive value to disable the check.

preFilterCap

Truncation value for the prefiltered image pixels. The algorithm first
computes the x-derivative at each pixel and clips its value by the [-
preFilterCap, preFilterCap] interval. The resulting values are
passed to the Birchfield-Tomasi pixel cost function.

uniquenessRatio
Margin in percentage by which the best (minimum) computed cost
function value should win the second best value to consider the found
match correct. Normally, a value within the 5-15 range is good enough.

speckleWindowSize
Maximum size of smooth disparity regions to consider their noise
speckles and invalidate. Set it to 0 to disable speckle filtering.
Otherwise, set it somewhere in the 50-200 range.

speckleRange
Maximum disparity variation within each connected component. If you
do speckle filtering, set the parameter to a positive value; it will be
implicitly multiplied by 16. Normally, 1 or 2 is good enough.



Depth Estimation and Segmentation Chapter 4

[ 98 ]

mode

Set it to StereoSGBM::MODE_HH to run the full-scale, two-pass
dynamic programming algorithm. It will consume
O(W*H*numDisparities) bytes, which is large for 640x480 stereo and
huge for HD-size pictures. By default, it is set to false.

With the preceding script, you will be able to load images of your choice and play around
with, parameters until you are happy with the disparity map generated by StereoSGBM.

Foreground detection with the GrabCut
algorithm
Calculating a disparity map is a useful way to segment the foreground and background of
an image, but StereoSGBM is not the only algorithm that can accomplish this and, in fact,
StereoSGBM is more about gathering three-dimensional information from two-dimensional
pictures than anything else. GrabCut, however, is a perfect tool for foreground/background
segmentation. The GrabCut algorithm consists of the following steps:

A rectangle including the subject(s) of the picture is defined.1.
The area lying outside the rectangle is automatically defined as a background.2.
The data contained in the background is used as a reference to distinguish3.
background areas from foreground areas within the user-defined rectangle.
A Gaussian Mixture Model (GMM) models the foreground and background,4.
and labels undefined pixels as probable background and probable foreground.
Each pixel in the image is virtually connected to the surrounding pixels through5.
virtual edges, and each edge is assigned a probability of being foreground or
background, based on how similar it is in color to the pixels surrounding it.



Depth Estimation and Segmentation Chapter 4

[ 99 ]

Each pixel (or node as it is conceptualized in the algorithm) is connected to either6.
a foreground or a background node. You can visualize this as follows:

After the nodes have been connected to either terminal (the background or7.
foreground, also called the source or sink, respectively), the edges between nodes
belonging to different terminals are cut (hence the name, GrabCut). Thus, the
image is segmented into two parts. The following figure adequately represents
the algorithm:



Depth Estimation and Segmentation Chapter 4

[ 100 ]

Let's look at an example. We start with the image of a beautiful statue of an angel:

We want to grab our angel and discard the background. To do this, we will create a
relatively short script that will segment the image using GrabCut, and then display the
resulting foreground image side by side with the original. We will use matplotlib, a
popular Python library, which makes displaying charts and images a trivial task.

The code is actually quite straightforward. First, we load the image we want to process and
then we create a mask populated with zeros with the same shape as the image we've
loaded:

import numpy as np
import cv2
from matplotlib import pyplot as plt

original = cv2.imread('../images/statue_small.jpg')
img = original.copy()
mask = np.zeros(img.shape[:2], np.uint8)

We then create zero-filled background and foreground models:

bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)



Depth Estimation and Segmentation Chapter 4

[ 101 ]

We could have populated these models with data, but we are going to initialize the
GrabCut algorithm with a rectangle identifying the subject we want to isolate. Thus,
background and foreground models are going to be determined based on the areas left out
of the initial rectangle. This rectangle is defined in the next line:

rect = (100, 1, 421, 378)

Now to the interesting part! We run the GrabCut algorithm. As arguments, we specify the
empty models, the mask, and the rectangle that we want to use to initialize the operation:

cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 5, cv2.GC_INIT_WITH_RECT)

Notice the 5 integer argument. This is the number of iterations the algorithm is going to run
on the image. You can increase it, but at some point pixel classifications will converge so,
effectively, you might just be adding iterations without any further improvements to the
result.

After this, our mask will have changed to contain values between 0 and 3, inclusive. These
values have the following meanings:

0 (also defined as cv2.GC_BGD) is an obvious background pixel.
1 (also defined as cv2.GC_FGD) is an obvious foreground pixel.
2 (also defined as cv2.GC_PR_BGD) is a probable background pixel.
3 (also defined as cv2.GC_PR_FGD) is a probable foreground pixel.

To visualize the result of the GrabCut, we want to paint the background black and leave the
foreground unchanged. We can make another mask to help us do this. The values 0 and 2
(obvious and probable background) will be converted into 0s, and the values 1 and 3
(obvious and probably foreground) into 1s. The result will be stored in mask2. We will
multiply the original image by mask2 in order to make the background black (by
multiplying by 0) while leaving the foreground unchanged (by multiplying by 1). Here is
the relevant code:

mask2 = np.where((mask==2) | (mask==0), 0, 1).astype('uint8')
img = img*mask2[:,:,np.newaxis]

The final part of our script displays the images side by side:

plt.subplot(121)
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.title("grabcut")
plt.xticks([])
plt.yticks([])



Depth Estimation and Segmentation Chapter 4

[ 102 ]

plt.subplot(122)
plt.imshow(cv2.cvtColor(original, cv2.COLOR_BGR2RGB))
plt.title("original")
plt.xticks([])
plt.yticks([])

plt.show()

Here is the result:

This is quite a satisfactory result. You'll notice that a triangle of background is left under the
angel's arm. It is possible to refine the GrabCut result by manually selecting more
background regions and applying more iterations. This technique is quite well illustrated in
the grabcut.py file in the samples/python folder of your OpenCV installation.

Image segmentation with the Watershed
algorithm
Finally, let's take a quick look at the Watershed algorithm. The algorithm is called
Watershed because its conceptualization involves water. Imagine areas with low density
(little to no change) in an image as valleys, and areas with high density (lots of change) as
peaks. Start filling the valleys with water to the point where water from two different
valleys is about to merge. To prevent the merging of water from different valleys, you build
a barrier to keep them separated. The resulting barrier is the image segmentation.



Depth Estimation and Segmentation Chapter 4

[ 103 ]

As an example, let's segment an image of a playing card. We want to separate the pips (the
large, countable symbols) from the background:

Once more, we begin our script by importing numpy, cv2, and matplotlib.1.
Then, we load our image of a playing card from file:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('../images/5_of_diamonds.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

After converting the image from color to grayscale, we run a threshold on it. This2.
operation helps by dividing the image into two regions, blacks and whites:

ret, thresh = cv2.threshold(gray, 0, 255,
                            cv2.THRESH_BINARY_INV |
cv2.THRESH_OTSU)

Next, we remove noise from the thresholded image by applying a morphological3.
transformation to it. Morphology consists of dilating (expanding) or eroding
(contracting) the white regions of the image in some series of steps. We will
apply the morphological open operation, which consists of an erosion step
followed by a dilation step. The open operation makes big white regions swallow
up little black regions (noise), while leaving big black regions (real objects)
relatively unchanged. The cv2.morphologyEx function, with the
cv2.MORPH_OPEN argument, allows us to perform this operation:

# Remove noise.
kernel = np.ones((3,3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel,
                           iterations = 2)

By dilating the result of the open transformation, we can obtain regions of the4.
image that are most certainly background:

# Find the sure background region.
sure_bg = cv2.dilate(opening, kernel, iterations=3)

Conversely, we can obtain sure foreground regions by applying
distanceTransform. In practical terms, we can be most confident that a point is
really part of the foreground if it is far away from the nearest foreground-
background edge.



Depth Estimation and Segmentation Chapter 4

[ 104 ]

Once we have obtained the distanceTransform representation of the image,5.
we apply a threshold to select regions that are most surely part of the
foreground:

# Find the sure foreground region.
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
ret, sure_fg = cv2.threshold(
        dist_transform, 0.7*dist_transform.max(), 255, 0)
sure_fg = sure_fg.astype(np.uint8)

At this stage, we have some sure foreground and background regions.

Now, what about the regions in between? We can find these unsure or unknown6.
regions by subtracting the sure foreground from background:

# Find the unknown region.
unknown = cv2.subtract(sure_bg, sure_fg)

Now that we have these regions, we can build our famous barriers to stop the7.
water from merging. This is done with the connectedComponents function. We
took a glimpse at graph theory when we analyzed the GrabCut algorithm and
conceptualized an image as a set of nodes that are connected by edges. Given the
sure foreground areas, some of these nodes will be connected together, but some
will not. The disconnected nodes belong to different water valleys, and there
should be a barrier between them:

# Label the foreground objects.
ret, markers = cv2.connectedComponents(sure_fg)

Next, we add 1 to the labels for all regions because we only want unknowns to8.
stay at 0:

# Add one to all labels so that sure background is not 0, but 1.
markers += 1

# Label the unknown region as 0.
markers[unknown==255] = 0

Finally, we open the gates! Let the water flow! The cv2.watershed function9.
assigns the label -1 to pixels that are edges between components. We color these
edges blue in the original image:

markers = cv2.watershed(img, markers)
img[markers==-1] = [255,0,0]



Depth Estimation and Segmentation Chapter 4

[ 105 ]

Let's use matplotlib to show the result:

plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()

The plot should look like the following image:

This type of segmentation could serve as part of a system for recognizing playing cards.
Similarly, the Watershed algorithm can help us segment and count any kind of object on a
plain background, such as coins on a sheet of paper.

Summary
In this chapter, we learned how to analyze simple spatial relationships within images so
that we can differentiate between multiple objects, or between a foreground and a
background. Our techniques included extraction of three-dimensional information from a
two-dimensional input (a video frame or an image). First, we examined depth cameras, and
then epipolar geometry and stereo images, so we are now able to calculate disparity maps.
Finally, we looked at image segmentation with two of the most popular methods: GrabCut
and Watershed.

As we progress through this book, we will continue to extract increasingly complex
information from images. Next, we are ready to explore OpenCV's functionality for
detection and recognition of faces and other objects.



5
Detecting and Recognizing

Faces
Computer vision makes many futuristic-sounding tasks a reality. Two such tasks are face
detection (locating faces in an image) and face recognition (identifying a face as a specific
person). OpenCV implements several algorithms for face detection and recognition. These
have applications in all sorts of real-world contexts, from security to entertainment.

This chapter introduces some of OpenCV's face detection and recognition functionality,
along with the data files that define particular types of trackable objects. Specifically, we
look at Haar cascade classifiers, which analyze the contrast between adjacent image regions
to determine whether or not a given image or sub image matches a known type. We
consider how to combine multiple Haar cascade classifiers in a hierarchy so that one
classifier identifies a parent region (for our purposes, a face) and other classifiers identify
child regions (such as eyes).

We also take a detour into the humble but important subject of rectangles. By drawing,
copying, and resizing rectangular image regions, we can perform simple manipulations on
image regions that we are tracking.

All told, we will cover the following topics:

Understanding Haar cascades.
Finding the pre-trained Haar cascades that come with OpenCV. These include
several face detectors.
Using Haar cascades to detect faces in still images and videos.
Gathering images to train and test a face recognizer.
Using several different face recognition algorithms: Eigenfaces, Fisherfaces, and
Local Binary Pattern Histograms (LBPHs).
Copying rectangular regions from one image to another, with or without a mask.



Detecting and Recognizing Faces Chapter 5

[ 107 ]

Using a depth camera to distinguish between a face and the background based
on depth.
Swapping two people's faces in an interactive application.

By the end of this chapter, we will integrate face tracking and rectangle manipulations into
Cameo, the interactive application that we have developed in previous chapters. Finally,
we will have some face-to-face interaction!

Technical requirements
This chapter uses Python, OpenCV, and NumPy. As part of OpenCV, it uses the optional
opencv_contrib modules, which include functionality for face recognition. Some parts of
this chapter use OpenCV's optional support for OpenNI 2 to capture images from depth
cameras. Please refer back to Chapter 1, Setting Up OpenCV, for installation instructions.

The complete code for this chapter can be found in this book's GitHub repository, https://
github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-
Edition, in the chapter05 folder. Sample images are in the repository in the images
folder.

Conceptualizing Haar cascades
When we talk about classifying objects and tracking their location, what exactly are we
hoping to pinpoint? What constitutes a recognizable part of an object?

Photographic images, even from a webcam, may contain a lot of detail for our (human)
viewing pleasure. However, image detail tends to be unstable with respect to variations in
lighting, viewing angle, viewing distance, camera shake, and digital noise. Moreover, even
real differences in physical detail might not interest us for classification. Joseph Howse, one
of this book's authors, was taught in school that no two snowflakes look alike under a
microscope. Fortunately, as a Canadian child, he had already learned how to recognize
snowflakes without a microscope, as the similarities are more obvious in bulk.

Hence, some means of abstracting image detail is useful in producing stable classification
and tracking results. The abstractions are called features, which are said to be extracted
from the image data. There should be far fewer features than pixels, though any pixel might
influence multiple features. A set of features is represented as a vector, and the level of
similarity between two images can be evaluated based on some measure of the distance
between the images' corresponding feature vectors.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Detecting and Recognizing Faces Chapter 5

[ 108 ]

Haar-like features are one type of feature that is often applied to real-time face detection.
They were first used for this purpose in the paper, Robust Real-Time Face Detection, by Paul
Viola and Michael Jones (International Journal of Computer Vision 57(2), 137–154, Kluwer
Academic Publishers, 2001). An electronic version of this paper is available at
http://www.vision.caltech.edu/html-files/EE148-2005-

Spring/pprs/viola04ijcv.pdf. Each Haar-like feature describes the pattern of contrast
among adjacent image regions. For example, edges, vertices, and thin lines each generate a
kind of feature. Some features are distinctive in the sense that they typically occur in a
certain class of object (such as a face) but not in other objects. These distinctive features can
be organized into a hierarchy, called a cascade, in which the highest layers contain features
of greatest distinctiveness, enabling a classifier to quickly reject subjects that lack these
features.

For any given subject, the features may vary depending on the scale of the image and the
size of the neighborhood within which contrast is being evaluated. The latter is called the
window size. To make a Haar cascade classifier scale-invariant or, in other words, robust
to changes in scale, the window size is kept constant but images are rescaled a number of
times; hence, at some level of rescaling, the size of an object (such as a face) may match the
window size. Together, the original image and the rescaled images are called an image
pyramid, and each successive level in this pyramid is a smaller rescaled image. OpenCV
provides a scale-invariant classifier that can load a Haar cascade from an XML file in a
particular format. Internally, this classifier converts any given image into an image
pyramid.

Haar cascades, as implemented in OpenCV, are not robust to changes in rotation or
perspective. For example, an upside-down face is not considered similar to an upright face
and a face viewed in profile is not considered similar to a face viewed from the front. A
more complex and more resource-intensive implementation could improve Haar cascades'
robustness to rotation by considering multiple transformations of images as well as
multiple window sizes. However, we will confine ourselves to the implementation in
OpenCV.

Getting Haar cascade data
The OpenCV 4 source code, or your installation of a prepackaged build of OpenCV 4,
should contain a subfolder called data/haarcascades. If you are unable to locate this,
refer back to Chapter 1, Setting Up OpenCV, for instructions on obtaining the OpenCV 4
source code.

http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/viola04ijcv.pdf
http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/viola04ijcv.pdf


Detecting and Recognizing Faces Chapter 5

[ 109 ]

The data/haarcascades folder contains XML files that can be loaded by an OpenCV class
called cv2.CascadeClassifier. An instance of this class interprets a given XML file as a
Haar cascade, which provides a detection model for a type of object such as a face.
cv2.CascadeClassifier can detect this type of object in any image. As usual, we could
obtain a still image from a file, or we could obtain a series of frames from a video file or a
video camera.

Once you find data/haarcascades, create a directory elsewhere for your project; in this
folder, create a subfolder called cascades, and copy the following files from
data/haarcascades into cascades:

haarcascade_frontalface_default.xml

haarcascade_frontalface_alt.xml

haarcascade_eye.xml

As their names suggest, these cascades are for tracking faces and eyes. They require a
frontal, upright view of the subject. We will use them later when building a face detector.

If you are curious about how these cascade files are generated, you can
find more information in Joseph Howse's book, OpenCV 4 for Secret Agents
(Packt Publishing, 2019), specifically in Chapter 3, Training a Smart Alarm to
Recognize the Villain and His Cat. With a lot of patience and a reasonably
powerful computer, you can make your own cascades and train them for
various types of objects.

Using OpenCV to perform face detection
With cv2.CascadeClassifier, it makes little difference whether we perform face
detection on a still image or a video feed. The latter is just a sequential version of the
former: face detection on a video is simply face detection applied to each frame. Naturally,
with more advanced techniques, it would be possible to track a detected face continuously
across multiple frames and determine that the face is the same one in each frame. However,
it is good to know that a basic sequential approach also works.

Let's go ahead and detect some faces.



Detecting and Recognizing Faces Chapter 5

[ 110 ]

Performing face detection on a still image
The first and most basic way to perform face detection is to load an image and detect faces
in it. To make the result visually meaningful, we will draw rectangles around faces in the
original image. Remembering that the face detector is designed for upright, frontal faces,
we will use an image of a row of people, specifically woodcutters, standing shoulder-to-
shoulder and facing the viewer.

Having copied the Haar cascade XML files into our cascades folder, let's go ahead and
create the following basic script to perform face detection:

import cv2

face_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_frontalface_default.xml')
img = cv2.imread('../images/woodcutters.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.08, 5)
for (x, y, w, h) in faces:
    img = cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
cv2.namedWindow('Woodcutters Detected!')
cv2.imshow('Woodcutters Detected!', img)
cv2.imwrite('./woodcutters_detected.jpg', img)
cv2.waitKey(0)

Let's walk through the preceding code in small steps. First, we use the obligatory cv2
import that you will find in every script in this book. Then, we declare a face_cascade
variable, which is a CascadeClassifier object that loads a cascade for face detection:

face_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_frontalface_default.xml')

We then load our image file with cv2.imread and convert it into grayscale because
CascadeClassifier expects grayscale images. The next step,
face_cascade.detectMultiScale, is where we perform the actual face detection:

img = cv2.imread('../images/woodcutters.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.08, 5)



Detecting and Recognizing Faces Chapter 5

[ 111 ]

The parameters of detectMultiScale include scaleFactor and minNeighbors. The
scaleFactor argument, which should be greater than 1.0, determines the downscaling
ratio of the image at each iteration of the face detection process. As we discussed earlier in
the Conceptualizing Haar cascades section, this downscaling is intended to achieve scale
invariance by matching various faces to the window size. The minNeighbors argument is
the minimum number of overlapping detections that are required in order to retain a
detection result. Normally, we expect that a face may be detected in multiple overlapping
windows, and a greater number of overlapping detections makes us more confident that
the detected face is truly a face.

The value returned from the detection operation is a list of tuples that represent the face
rectangles. OpenCV's cv2.rectangle function allows us to draw rectangles at the
specified coordinates. x and y represent the left and top coordinates, while w and h
represent the width and height of the face rectangle. We draw blue rectangles around all of
the faces we find by looping through the faces variable, making sure we use the original
image for drawing, not the gray version:

for (x, y, w, h) in faces:
    img = cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)

Lastly, we call cv2.imshow to display the resulting processed image. As usual, to prevent
the image window from closing automatically, we insert a call to waitKey, which returns
when the user presses any key:

cv2.imshow('Woodcutters Detected!', img)
cv2.imwrite('./woodcutters_detected.jpg', img)
cv2.waitKey(0)

And there we go, a whole band of woodcutters have been detected in our image, as shown
in the following screenshot:



Detecting and Recognizing Faces Chapter 5

[ 112 ]

The photograph in this example is the work of Sergey Prokudin-Gorsky
(1863-1944), a pioneer of color photography. Tsar Nicholas II sponsored
Prokudin-Gorsky to photograph people and places throughout the
Russian Empire as a vast documentary project. Prokudin-Gorsky
photographed these woodcutters near the Svir River, in northwestern
Russia, in 1909.

Performing face detection on a video
We now understand how to perform face detection on a still image. As mentioned
previously, we can repeat the process of face detection on each frame of a video (be it a
camera feed or a pre-recorded video file).



Detecting and Recognizing Faces Chapter 5

[ 113 ]

The next script will open a camera feed, read a frame, examine that frame for faces, and
scan for eyes within the detected faces. Finally, it will draw blue rectangles around the faces
and green rectangles around the eyes. Here is the script in its entirety:

import cv2

face_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_eye.xml')

camera = cv2.VideoCapture(0)
while (cv2.waitKey(1) == -1):
    success, frame = camera.read()
    if success:
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(
            gray, 1.3, 5, minSize=(120, 120))
        for (x, y, w, h) in faces:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
            roi_gray = gray[y:y+h, x:x+w]
            eyes = eye_cascade.detectMultiScale(
                roi_gray, 1.03, 5, minSize=(40, 40))
            for (ex, ey, ew, eh) in eyes:
                cv2.rectangle(frame, (x+ex, y+ey),
                              (x+ex+ew, y+ey+eh), (0, 255, 0), 2)
        cv2.imshow('Face Detection', frame)

Let's break up the preceding sample into smaller, digestible chunks:

As usual, we import the cv2 module. After that, we initialize two1.
CascadeClassifier objects, one for faces and another for eyes:

face_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_eye.xml')

As in most of our interactive scripts, we open a camera feed and start iterating2.
over frames. We continue until the user presses any key. Whenever we
successfully capture a frame, we convert it into grayscale as our first step in
processing it:

camera = cv2.VideoCapture(0)
while (cv2.waitKey(1) == -1):
    success, frame = camera.read()



Detecting and Recognizing Faces Chapter 5

[ 114 ]

    if success:
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

We detect faces with the detectMultiScale method of our face detector. As we3.
have previously done, we use the scaleFactor and minNeighbors arguments.
We also use the minSize argument to specify a minimum size of a face,
specifically 120x120. No attempt will be made to detect faces smaller than this.
(Assuming that our user is sitting close to the camera, it is safe to say that the
user's face will be larger than 120x120 pixels.) Here is the call to
detectMultiScale:

faces = face_cascade.detectMultiScale(
    gray, 1.3, 5, minSize=(120, 120))

We iterate over the rectangles of the detected faces. We draw a blue border4.
around each rectangle in the original color image. Then, within the same
rectangular region of the grayscale image, we perform eye detection:

for (x, y, w, h) in faces:
    cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
    roi_gray = gray[y:y+h, x:x+w]
    eyes = eye_cascade.detectMultiScale(
        roi_gray, 1.1, 5, minSize=(40, 40))

The eye detector is a bit less accurate than the face detector. You might see
shadows, parts of the frames of glasses, or other regions of the face falsely
detected as eyes. To improve the results, you could try defining roi_gray
as a smaller region of the face, since we can make a good guess about the
eyes' location in an upright face. You could also try using a maxSize
argument to avoid false positives that are too large to be eyes. Also, you
could adjust minSize and maxSize so that the dimensions are
proportional to w and h, the size of the detected face. As an exercise, feel
free to experiment with changes to these and other parameters.

We loop through the resulting eye rectangles and draw green outlines around5.
them:

for (ex, ey, ew, eh) in eyes:
    cv2.rectangle(frame, (x+ex, y+ey),
                  (x+ex+ew, y+ey+eh), (0, 255, 0), 2)



Detecting and Recognizing Faces Chapter 5

[ 115 ]

Finally, we show the resulting frame in the window:6.

cv2.imshow('Face Detection', frame)

Run the script. If our detectors produce accurate results, and if any face is within the field of
view of the camera, you should see a blue rectangle around the face and a green rectangle
around each eye, as shown in this screenshot:

Experiment with this script to see how the face and eye detectors perform under various
conditions. Try a brighter or darker room. If you wear glasses, try removing them. Try
various people's faces and various expressions. Adjust the detection parameters in the
script to see how they affect the results. When you are satisfied, let's consider what else we
can do with faces in OpenCV.



Detecting and Recognizing Faces Chapter 5

[ 116 ]

Performing face recognition
Detecting faces is a fantastic feature of OpenCV and one that constitutes the basis for a
more advanced operation: face recognition. What is face recognition? It is the ability of a
program, given an image or a video feed containing a person's face, to identify that person.
One of the ways to achieve this (and the approach adopted by OpenCV) is to train the
program by feeding it a set of classified pictures (a facial database) and to perform
recognition based on features of those pictures.

Another important feature of OpenCV's face recognition module is that each recognition
has a confidence score, which allows us to set thresholds in real-life applications to limit the
incidence of false identifications.

Let's start from the very beginning; to perform face recognition, we need faces to recognize.
We can do this in two ways: supply the images ourselves or obtain freely available face
databases. A large directory of face databases is available online at http://www.face-rec.
org/databases/. Here are a few notable examples from the directory:

Yale Face Database (Yalefaces):
http://vision.ucsd.edu/content/yale-face-database

Extended Yale Face Database B: http://vision.ucsd.edu/content/extended-
yale-face-database-b-b

Database of Faces (from AT&T Laboratories Cambridge):
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

To perform face recognition on these samples, we would then have to run face recognition
on an image that contains the face of one of the sampled people. This process might be
educational, but perhaps not as satisfying as providing images of our own. You probably
had the same thought that many computer vision learners have had: I wonder if I can write
a program that recognizes my face with a certain degree of confidence.

Generating the data for face recognition
Let's go ahead and write a script that will generate those images for us. A few images
containing different expressions are all that we need, but it is preferable that the training
images are square and are all the same size. Our sample script uses a size of 200x200, but
most freely available datasets have smaller images than this.

http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://vision.ucsd.edu/content/yale-face-database
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://vision.ucsd.edu/content/extended-yale-face-database-b-b
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html


Detecting and Recognizing Faces Chapter 5

[ 117 ]

Here is the script itself:

import cv2
import os

output_folder = '../data/at/jm'
if not os.path.exists(output_folder):
    os.makedirs(output_folder)

face_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_eye.xml')

camera = cv2.VideoCapture(0)
count = 0
while (cv2.waitKey(1) == -1):
    success, frame = camera.read()
    if success:
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(
            gray, 1.3, 5, minSize=(120, 120))
        for (x, y, w, h) in faces:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
            face_img = cv2.resize(gray[y:y+h, x:x+w], (200, 200))
            face_filename = '%s/%d.pgm' % (output_folder, count)
            cv2.imwrite(face_filename, face_img)
            count += 1
        cv2.imshow('Capturing Faces...', frame)

Here, we are generating sample images by building on our newfound knowledge of how to
detect a face in a video feed. We are detecting a face, cropping that region of the grayscale-
converted frame, resizing it to be 200x200 pixels, and saving it as a PGM file with a name in
a particular folder (in this case, jm, one of the author's initials; you can use your own
initials). Like many of our windowed applications, this one runs until the user presses any
key.

The count variable is present because we needed progressive names for the images. Run
the script for a few seconds, change your facial expression a few times, and check the
destination folder you specified in the script. You will find a number of images of your face,
grayed, resized, and named with the format <count>.pgm.



Detecting and Recognizing Faces Chapter 5

[ 118 ]

Modify the output_folder variable to make it match your name. For example, you might
choose '../data/at/my_name'. Run the script, wait for it to detect your face in a number
of frames (say, 20 or more), and then press any key to quit. Now, modify the
output_folder variable again to make it match the name of a friend whom you also want
to recognize. For example, you might choose '../data/at/name_of_my_friend'. Do
not change the base part of the folder (in this case, '../data/at') because later, in the
Loading the training data for face recognition section, we will write code that loads the training
images from all of the subfolders of this base folder. Ask your friend to sit in front of the
camera, run the script again, let it detect your friend's face in a number of frames, and then
quit. Repeat this process for any additional people you might want to recognize.

Let's now move on to try and recognize the user's face in a video feed. This should be fun!

Recognizing faces
OpenCV 4 implements three different algorithms for recognizing faces: Eigenfaces,
Fisherfaces, and Local Binary Pattern Histograms (LBPHs). Eigenfaces and Fisherfaces are
derived from a more general-purpose algorithm called Principal Component Analysis
(PCA). For a detailed description of the algorithms, refer to the following links:

PCA: An intuitive introduction by Jonathon Shlens is available at
http://arxiv.org/pdf/1404.1100v1.pdf. This algorithm was invented in 1901
by Karl Pearson, and the original paper, On Lines and Planes of Closest Fit to
Systems of Points in Space, is available at http://pca.narod.ru/pearson1901.pdf.
Eigenfaces: The paper, Eigenfaces for Recognition (1991), by Matthew Turk and
Alex Pentland, is available at http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf.
Fisherfaces: The seminal paper, The Use of Multiple Measurements in Taxonomic
Problems (1936), by R. A. Fisher, is available at
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/

pdf.
Local Binary Pattern: The first paper describing this algorithm is Performance
evaluation of texture measures with classification based on Kullback discrimination of
distributions (1994), by T. Ojala, M. Pietikainen, and D. Harwood. It is available at
https://ieeexplore.ieee.org/document/576366.

http://arxiv.org/pdf/1404.1100v1.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://pca.narod.ru/pearson1901.pdf
http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.1936.tb02137.x/pdf
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366
https://ieeexplore.ieee.org/document/576366


Detecting and Recognizing Faces Chapter 5

[ 119 ]

For this book's purposes, let's just take a high-level overview of the algorithms. First and
foremost, they all follow a similar process; they take a set of classified observations (our
face database, containing numerous samples per individual), train a model based on it,
perform an analysis of face images (which may be face regions that we detected in an image
or video), and determine two things: the subject's identity, and a measure of confidence that
this identification is correct. The latter is commonly known as the confidence score.

Eigenfaces performs PCA, which identifies principal components of a certain set of
observations (again, your face database), calculates the divergence of the current
observation (the face being detected in an image or frame) compared to the dataset, and
produces a value. The smaller the value, the smaller the difference between the face
database and detected face; hence, a value of 0 is an exact match.

Fisherfaces also derives from PCA and evolves the concept, applying more complex logic.
While computationally more intensive, it tends to yield more accurate results than
Eigenfaces.

LBPH instead divides a detected face into small cells and, for each cell, builds a histogram
that describes whether the brightness of the image is increasing when comparing
neighboring pixels in a given direction. This cell's histogram can be compared to the
corresponding cell's in the model, producing a measure of similarity. Of the face
recognizers in OpenCV, the implementation of LBPH is the only one that allows the model
sample faces and the detected faces to be of different shape and size. Hence, it is a
convenient option, and the authors of this book find that its accuracy compares favorably to
the other two options.

Loading the training data for face recognition
Regardless of our choice of face recognition algorithm, we can load the training images in
the same way. Earlier, in the Generating the data for face recognition section, we generated
training images and saved them in folders that were organized according to people's names
or initials. For example, the following folder structure could contain sample face images of
this book's authors, Joseph Howse (J. H.) and Joe Minichino (J. M.):

../
  data/
    at/
      jh/
      jm/



Detecting and Recognizing Faces Chapter 5

[ 120 ]

Let's write a script that loads these images and labels them in a way that OpenCV's face
recognizers will understand. To work with the filesystem and the data, we will use the
Python standard library's os module, as well as the cv2 and numpy modules. Let's create a
script that starts with the following import statements:

import os

import cv2
import numpy

Let's add the following read_images function, which walks through a directory's
subdirectories, loads the images, resizes them to a specified size, and puts the resized
images in a list. At the same time, it builds two other lists: first, a list of people's names or
initials (based on the subfolder names), and second, a list of labels or numeric IDs
associated with the loaded images. For example, jh could be a name and 0 could be the
label for all images that were loaded from the jh subfolder. Finally, the function converts
the lists of images and labels into NumPy arrays, and it returns three variables: the list of
names, the NumPy array of images, and the NumPy array of labels. Here is the function's
implementation:

def read_images(path, image_size):
    names = []
    training_images, training_labels = [], []
    label = 0
    for dirname, subdirnames, filenames in os.walk(path):
        for subdirname in subdirnames:
            names.append(subdirname)
            subject_path = os.path.join(dirname, subdirname)
            for filename in os.listdir(subject_path):
                img = cv2.imread(os.path.join(subject_path, filename),
                                 cv2.IMREAD_GRAYSCALE)
                if img is None:
                    # The file cannot be loaded as an image.
                    # Skip it.
                    continue
                img = cv2.resize(img, image_size)
                training_images.append(img)
                training_labels.append(label)
            label += 1
    training_images = numpy.asarray(training_images, numpy.uint8)
    training_labels = numpy.asarray(training_labels, numpy.int32)
    return names, training_images, training_labels



Detecting and Recognizing Faces Chapter 5

[ 121 ]

Let's call our read_images function by adding code such as the following:

path_to_training_images = '../data/at'
training_image_size = (200, 200)
names, training_images, training_labels = read_images(
    path_to_training_images, training_image_size)

Edit the path_to_training_images variable in the preceding code
block to ensure that it matches the base folder of the output_folder
variables you defined earlier in the code for the section, Generating the data
for face recognition.

So far, we have training data in a useful format but we have not yet created a face
recognizer or performed any training. We will do so in the next section, where we continue
the implementation of the same script.

Performing face recognition with Eigenfaces
Now that we have an array of training images and an array of their labels, we can create
and train a face recognizer with just two more lines of code:

model = cv2.face.EigenFaceRecognizer_create()
model.train(training_images, training_labels)

What have we done here? We created the Eigenfaces face recognizer with OpenCV's
cv2.EigenFaceRecognizer_create function, and we trained the recognizer by passing
the arrays of images and labels (numeric IDs). Optionally, we could have passed two
arguments to cv2.EigenFaceRecognizer_create:

num_components: This is the number of components to keep for the PCA.
threshold: This is a floating-point value specifying a confidence threshold.
Faces with a confidence score below the threshold will be discarded. By default,
the threshold is the maximum floating-point value so that no faces are discarded.

To test this recognizer, let's use a face detector and a video feed from a camera. As we have
done in previous scripts, we can use the following line of code to initialize the face detector:

face_cascade = cv2.CascadeClassifier(
    './cascades/haarcascade_frontalface_default.xml')



Detecting and Recognizing Faces Chapter 5

[ 122 ]

The following code initializes the camera feed, iterates over frames (until the user presses
any key), and performs face detection and recognition on each frame:

camera = cv2.VideoCapture(0)
while (cv2.waitKey(1) == -1):
    success, frame = camera.read()
    if success:
        faces = face_cascade.detectMultiScale(frame, 1.3, 5)
        for (x, y, w, h) in faces:
            cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
            gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            roi_gray = gray[x:x+w, y:y+h]
            if roi_gray.size == 0:
                # The ROI is empty. Maybe the face is at the image edge.
                # Skip it.
                continue
            roi_gray = cv2.resize(roi_gray, training_image_size)
            label, confidence = model.predict(roi_gray)
            text = '%s, confidence=%.2f' % (names[label], confidence)
            cv2.putText(frame, text, (x, y - 20),
                        cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)
        cv2.imshow('Face Recognition', frame)

Let's walk through the most important functionality of the preceding block of code. For
each detected face, we convert and resize it so that we have a grayscale version that
matches the expected size (in this case, 200x200 pixels as defined by the
training_image_size variable in the previous section, Loading the training data for face
recognition). Then, we pass the resized, grayscale face to the face recognizer's predict
function. This returns a label and confidence score. We look up the person's name
corresponding to the numeric label of that face. (Remember that we created the names
array in the previous section, Loading the training data for face recognition.) We draw the name
and confidence score in blue text above the recognized face. After iterating over all detected
faces, we display the annotated image.

We have taken a simple approach to face detection and recognition, and it
serves the purpose of enabling you to have a basic application running
and understand the process of face recognition in OpenCV 4. To improve
upon this approach and make it more robust, you could take further steps
such as correctly aligning and rotating detected faces so that the accuracy
of the recognition is maximized.



Detecting and Recognizing Faces Chapter 5

[ 123 ]

When you run the script, you should see something similar to the following screenshot:

Next, let's consider how we would adapt these script to replace Eigenfaces with another 
face recognition algorithm.

Performing face recognition with Fisherfaces
What about Fisherfaces? The process does not change much; we simply need to instantiate
a different algorithm. With default arguments, the declaration of our model variable would
look like this:

model = cv2.face.FisherFaceRecognizer_create()

cv2.face.FisherFaceRecognizer_create takes the same two optional arguments as
cv2.createEigenFaceRecognizer_create: the number of principal components to
keep and the confidence threshold.



Detecting and Recognizing Faces Chapter 5

[ 124 ]

Performing face recognition with LBPH
Finally, let's take a quick look at the LBPH algorithm. Again, the process is similar.
However, the algorithm factory takes the following optional parameters (in order):

radius: The pixel distance between the neighbors that are used to calculate a
cell's histogram (by default, 1)
neighbors: The number of neighbors used to calculate a cell's histogram (by
default, 8)
grid_x: The number of cells into which the face is divided horizontally (by
default, 8)
grid_y: The number of cells into which the face is divided vertically (by default,
8)
confidence: The confidence threshold (by default, the highest possible floating-
point value so that no results are discarded)

With default arguments, the model declaration would look like this:

  model = cv2.face.LBPHFaceRecognizer_create()

Note that, with LBPH, we do not need to resize images as the division into
grids allows a comparison of patterns identified in each cell.

Discarding results based on the confidence score
The predict method returns a tuple, in which the first element is the label of the
recognized individual and the second is the confidence score. All algorithms come with the
option of setting a confidence score threshold, which measures the distance of the
recognized face from the original model, therefore, a score of 0 signifies an exact match.

There may be cases in which you would rather retain all recognitions and then apply
further processing, so you can come up with your own algorithms to estimate the
confidence score of a recognition. For example, if you are trying to identify people in a
video, you may want to analyze the confidence score in subsequent frames to establish
whether the recognition was successful or not. In this case, you can inspect the confidence
score obtained by the algorithm and draw your own conclusions.



Detecting and Recognizing Faces Chapter 5

[ 125 ]

The typical range of the confidence score depends on the algorithm.
Eigenfaces and Fisherfaces produce values (roughly) in the range 0 to
20,000, with any score below 4,000-5,000 being a quite confident
recognition. For LBPH, the reference value for a good recognition is below
50, and any value above 80 is considered a poor confidence score.

A normal custom approach would be to hold off drawing a rectangle around a recognized
face until we have a number of frames with a satisfying arbitrary confidence score, but you
have total freedom to use OpenCV's face recognition module to tailor your application to
your needs.

Swapping faces in the infrared
Face detection and recognition are not limited to the visible spectrum of light. With a Near-
Infrared (NIR) camera and NIR light source, face detection and recognition are possible
even when a scene appears totally dark to the human eye. This capability is quite useful in
security and surveillance applications.

We studied basic usage of NIR depth cameras, such as the Asus Xtion PRO, in Chapter 4,
Depth Estimation and Segmentation. We extended the object-oriented code of our interactive
application, Cameo. We captured frames from a depth camera. Based on depth, we
segmented each frame into a main layer (such as the user's face) and other layers. We
painted the other layers black. This achieved the effect of hiding the background so that
only the main layer (the user's face) appeared on-screen in the interactive video feed.

Now, let's modify Cameo to do something that exercises our previous skills in depth
segmentation and our new skills in face detection. Let's detect faces and, when we detect at
least two faces in a frame, let's swap the faces so that one person's head appears atop
another person's body. Rather than copying all pixels in a detected face rectangle, we will
only copy the pixels that are part of the main depth layer for that rectangle. This should
achieve the effect of swapping faces but not the background pixels surrounding the faces.

Once the changes are complete, Cameo will be able to produce output such as the following
screenshot:



Detecting and Recognizing Faces Chapter 5

[ 126 ]

Here, we see the face of Joseph Howse swapped with the face of Janet Howse, his mother.
Although Cameo is copying pixels from rectangular regions (and this is clearly visible at
the bottom of the swapped regions, in the foreground), some of the background pixels are
not swapped, so we do not see rectangular edges everywhere.

You can find all of the relevant changes to the Cameo source code in this book's repository
at https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-
Python-Third-Edition, specifically in the chapter05/cameo folder. For brevity, we will
not discuss all of the changes here in this book, but we will cover some of the highlights in
the next two subsections, Modifying the application's loop and Masking a copy operation.

Modifying the application's loop
To support face swapping, the Cameo project has two new modules called rects and
trackers. The rects module contains functions for copying and swapping rectangles,
with an optional mask to limit the copy or swap operation to particular pixels. The
trackers module contains a class called FaceTracker, which adapts OpenCV's face
detection functionality to an object-oriented style of programming.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Detecting and Recognizing Faces Chapter 5

[ 127 ]

As we have covered OpenCV's face detection functionality earlier in this chapter, and we
have demonstrated an object-oriented programming style in previous chapters, we will not
go into the FaceTracker implementation here. Instead, you may look at it in this book's
repository.

Let's open cameo.py so that we can walk through the overall changes to the application:

Near the top of the file, we need to import our new modules, as shown in bold in1.
the following code block:

import cv2
import depth
import filters
from managers import WindowManager, CaptureManager
import rects
from trackers import FaceTracker

Now, let's turn our attention to changes in the __init__ method of our2.
CameoDepth class. Our updated application uses an instance of FaceTracker.
As part of its functionality, FaceTracker can draw rectangles around detected
faces. Let's give Cameo's user the option to enable or disable the drawing of face
rectangles. We will keep track of the currently selected option via a Boolean
variable. The following code block shows (in bold) the necessary changes to
initialize the FaceTracker object and the Boolean variable:

class CameoDepth(Cameo):

    def __init__(self):
        self._windowManager = WindowManager('Cameo',
                                            self.onKeypress)
        #device = cv2.CAP_OPENNI2 # uncomment for Kinect
        device = cv2.CAP_OPENNI2_ASUS # uncomment for Xtion
        self._captureManager = CaptureManager(
            cv2.VideoCapture(device), self._windowManager, True)
        self._faceTracker = FaceTracker()
        self._shouldDrawDebugRects = False
        self._curveFilter = filters.BGRPortraCurveFilter()



Detecting and Recognizing Faces Chapter 5

[ 128 ]

We make use of the FaceTracker object in the run method of CameoDepth,
which contains the application's main loop that captures and processes frames.
Every time we successfully capture a frame, we call methods of FaceTracker to
update the face detection result and get the latest detected faces. Then, for each
face, we create a mask based on the depth camera's disparity map. (Previously, in
Chapter 4, Depth Estimation and Segmentation, we created such a mask for the
entire image instead of a mask for each face rectangle.) Then, we call a function,
rects.swapRects, to perform a masked swap of the face rectangles. (We will
look at the implementation of swapRects a little later, in the Masking a copy
operation section.)

Depending on the currently selected option, we might tell FaceTracker to draw3.
rectangles around the faces. All of the relevant changes are shown in bold in the
following code block:

    def run(self):
        """Run the main loop."""
        self._windowManager.createWindow()
        while self._windowManager.isWindowCreated:
            # ... The logic for capturing a frame is unchanged ...

            if frame is not None:
                self._faceTracker.update(frame)
                faces = self._faceTracker.faces
                masks = [
                    depth.createMedianMask(
                        disparityMap, validDepthMask,
                        face.faceRect) \
                    for face in faces
                ]
                rects.swapRects(frame, frame,
                                [face.faceRect for face in faces],
                                masks)

                if self._captureManager.channel ==
cv2.CAP_OPENNI_BGR_IMAGE:
                    # A BGR frame was captured.
                    # Apply filters to it.
                    filters.strokeEdges(frame, frame)
                    self._curveFilter.apply(frame, frame)

                if self._shouldDrawDebugRects:
                    self._faceTracker.drawDebugRects(frame)

            self._captureManager.exitFrame()
            self._windowManager.processEvents()



Detecting and Recognizing Faces Chapter 5

[ 129 ]

Finally, let's modify the onKeypress method so that the user can hit the X key to4.
start or stop displaying rectangles around detected faces. Again, the relevant
changes are shown in bold in the following code block:

    def onKeypress(self, keycode):
        """Handle a keypress.

        space -> Take a screenshot.
        tab -> Start/stop recording a screencast.
        x -> Start/stop drawing debug rectangles around faces.
        escape -> Quit.

        """
        if keycode == 32: # space
            self._captureManager.writeImage('screenshot.png')
        elif keycode == 9: # tab
            if not self._captureManager.isWritingVideo:
                self._captureManager.startWritingVideo(
                    'screencast.avi')
            else:
                self._captureManager.stopWritingVideo()
        elif keycode == 120: # x
            self._shouldDrawDebugRects = \
                not self._shouldDrawDebugRects
        elif keycode == 27: # escape
            self._windowManager.destroyWindow()

Next, let's look at the implementation of the rects module that we imported earlier in this
section.

Masking a copy operation
The rects module is implemented in rects.py. We already saw a call to the
rects.swapRects function in the previous section. However, before we consider the
implementation of swapRects, we first need to a more basic copyRect function.

As far back as Chapter 2, Handling Files, Cameras, and GUIs, we learned how to copy data
from one rectangular region of interest (ROI) to another using NumPy's slicing syntax.
Outside the ROIs, the source and destination images were unaffected. Now, we want to
apply further limits to this copy operation. We want to use a given mask that has the same
dimensions as the source rectangle.



Detecting and Recognizing Faces Chapter 5

[ 130 ]

We shall copy only those pixels in the source rectangle where the mask's value is not zero.
Other pixels shall retain their old values from the destination image. This logic, with an
array of conditions and two arrays of possible output values, can be expressed concisely
with the numpy.where function.

With this approach in mind, let's consider our copyRect function. As arguments, it takes a
source and destination image, a source and destination rectangle, and a mask. The latter
may be None, in which case, we simply resize the content of the source rectangle to match
the destination rectangle and then assign the resulting resized content to the destination
rectangle. Otherwise, we next ensure that the mask and the images have the same number
of channels. We assume that the mask has one channel but the images may have three
channels (BGR). We can add duplicate channels to mask using the repeat and reshape
methods of numpy.array. Finally, we perform the copy operation using numpy.where.
The complete implementation is as follows:

def copyRect(src, dst, srcRect, dstRect, mask = None,
             interpolation = cv2.INTER_LINEAR):
    """Copy part of the source to part of the destination."""

    x0, y0, w0, h0 = srcRect
    x1, y1, w1, h1 = dstRect

    # Resize the contents of the source sub-rectangle.
    # Put the result in the destination sub-rectangle.
    if mask is None:
        dst[y1:y1+h1, x1:x1+w1] = \
            cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
                       interpolation = interpolation)
    else:
        if not utils.isGray(src):
            # Convert the mask to 3 channels, like the image.
            mask = mask.repeat(3).reshape(h0, w0, 3)
        # Perform the copy, with the mask applied.
        dst[y1:y1+h1, x1:x1+w1] = \
            numpy.where(cv2.resize(mask, (w1, h1),
                                   interpolation = \
                                   cv2.INTER_NEAREST),
                        cv2.resize(src[y0:y0+h0, x0:x0+w0], (w1, h1),
                                   interpolation = interpolation),
                        dst[y1:y1+h1, x1:x1+w1])



Detecting and Recognizing Faces Chapter 5

[ 131 ]

We also need to define a swapRects function, which uses copyRect to perform a circular
swap of a list of rectangular regions. swapRects has a masks argument, which is a list of
masks whose elements are passed to the respective copyRect calls. If the value of the
masks argument is None, we pass None to every copyRect call. The following code shows
the full implementation of swapRects:

def swapRects(src, dst, rects, masks = None,
              interpolation = cv2.INTER_LINEAR):
    """Copy the source with two or more sub-rectangles swapped."""

    if dst is not src:
        dst[:] = src

    numRects = len(rects)
    if numRects < 2:
        return

    if masks is None:
        masks = [None] * numRects

    # Copy the contents of the last rectangle into temporary storage.
    x, y, w, h = rects[numRects - 1]
    temp = src[y:y+h, x:x+w].copy()

    # Copy the contents of each rectangle into the next.
    i = numRects - 2
    while i >= 0:
        copyRect(src, dst, rects[i], rects[i+1], masks[i],
                 interpolation)
        i -= 1

    # Copy the temporarily stored content into the first rectangle.
    copyRect(temp, dst, (0, 0, w, h), rects[0], masks[numRects - 1],
             interpolation)

Note that the mask argument in copyRect and the masks argument in swapRects both
have a default value of None. If no mask is specified, these functions copy or swap the
entire contents of the rectangle or rectangles.



Detecting and Recognizing Faces Chapter 5

[ 132 ]

Summary
By now, you should have a good understanding of how face detection and face recognition
work and how to implement them in Python and OpenCV 4.

Face detection and face recognition are constantly evolving branches of computer vision,
with algorithms being developed continuously, and they will evolve even faster in the near
future with a growing interest in robotics and the Internet of Things (IoT).

For now, the accuracy of detection and recognition algorithms heavily depends on the
quality of the training data, so make sure you provide your applications with a large
number of training images covering a variety of expressions, poses, and lighting conditions.

As human beings, we might be predisposed to think that human faces are particularly
recognizable. We might even be overconfident in our own face recognition abilities.
However, in computer vision, there is nothing very special about human faces, and we can
just as readily use algorithms to find and identify other things. We will begin to do so next
in Chapter 6, Retrieving Images and Searching Using Image Descriptors.



6
Retrieving Images and

Searching Using Image
Descriptors

Similar to the human eyes and brain, OpenCV can detect the main features of an image and
extract them into so-called image descriptors. These features can then be used as a
database, enabling image-based searches. Moreover, we can use key points to stitch images
together and compose a bigger image. (Think of putting together many pictures to form a
360° panorama.)

This chapter will show you how to detect the features of an image with OpenCV and make
use of them to match and search images. Over the course of this chapter, we will take
sample images and detect their main features, and then try to find a region of another
image that matches the sample image. We will also find the homography or spatial
relationship between a sample image and a matching region of another image.

More specifically, we will cover the following tasks:

Detecting keypoints and extracting local descriptors around the keypoints using
any of the following algorithms: Harris corners, SIFT, SURF, or ORB
Matching keypoints using brute-force algorithms or the FLANN algorithm
Filtering out bad matches using KNN and the ratio test
Finding the homography between two sets of matching keypoints
Searching a set of images to determine which one contains the best match for a
reference image



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 134 ]

We will finish this chapter by building a proof-of-concept forensic application. Given a
reference image of a tattoo, we will search for a set of images of people in order to find a
person with a matching tattoo.

Technical requirements
This chapter uses Python, OpenCV, and NumPy. In regards to OpenCV, we use the
optional opencv_contrib modules, which include additional algorithms for keypoint
detection and matching. To enable the SIFT and SURF algorithms (which are patented and
not free for commercial use), we must configure the opencv_contrib modules with
the OPENCV_ENABLE_NONFREE flag in CMake. Please refer to Chapter 1, Setting Up
OpenCV, for installation instructions. Additionally, if you have not already installed
Matplotlib, install it by running $ pip install matplotlib (or $ pip3 install
matplotlib, depending on your environment).

The complete code for this chapter can be found in this book's GitHub repository, https://
github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-
Edition, in the chapter06 folder. The sample images can be found in the images folder.

Understanding types of feature detection
and matching
A number of algorithms can be used to detect and describe features, and we will explore
several of them in this section. The most commonly used feature detection and descriptor
extraction algorithms in OpenCV are as follows:

Harris: This algorithm is useful for detecting corners.
SIFT: This algorithm is useful for detecting blobs.
SURF: This algorithm is useful for detecting blobs.
FAST: This algorithm is useful for detecting corners.
BRIEF: This algorithm is useful for detecting blobs.
ORB: This algorithm stands for Oriented FAST and Rotated BRIEF. It is useful
for detecting a combination of corners and blobs.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 135 ]

Matching features can be performed with the following methods:

Brute-force matching
FLANN-based matching

Spatial verification can then be performed with homography.

We have just introduced a lot of new terminology and algorithms. Now, we will go over
their basic definitions.

Defining features
What is a feature, exactly? Why is a particular area of an image classifiable as a feature,
while others are not? Broadly speaking, a feature is an area of interest in the image that is
unique or easily recognizable. Corners and regions with a high density of textural detail are
good features, while patterns that repeat themselves a lot and low-density regions (such as
a blue sky) are not. Edges are good features as they tend to divide two regions of an image.
A blob (a region of an image that greatly differs from its surrounding areas) is also an
interesting feature.

Most feature detection algorithms revolve around the identification of corners, edges, and
blobs, with some also focusing on the concept of a ridge, which you can conceptualize as
the axis of symmetry of an elongated object. (Think, for example, about identifying a road
in an image.)

Some algorithms are better at identifying and extracting features of a certain type, so it is
important to know what your input image is so that you can utilize the best tool in your
OpenCV belt.

Detecting Harris corners
Let's start by finding corners using the Harris corner detection algorithm. We will do this
by implementing an example. If you continue to study OpenCV beyond this book, you will
find that chessboards are a common subject of analysis in computer vision, partly because a
checkered pattern is suited to many types of feature detection, and partly because chess is a
popular pastime, especially in Russia, where many of OpenCV's developers live. 



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 136 ]

Here is our sample image of a chessboard and chess pieces:

OpenCV has a handy function called cv2.cornerHarris, which detects corners in an
image. We can see this function at work in the following basic example:

import cv2

img = cv2.imread('../images/chess_board.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dst = cv2.cornerHarris(gray, 2, 23, 0.04)
img[dst > 0.01 * dst.max()] = [0, 0, 255]
cv2.imshow('corners', img)
cv2.waitKey()

Let's analyze the code. After the usual imports, we load the chessboard image and convert
it into grayscale. Then, we call the cornerHarris function:

dst = cv2.cornerHarris(gray, 2, 23, 0.04)

The most important parameter here is the third one, which defines the aperture or kernel
size of the Sobel operator. The Sobel operator detects edges by measuring horizontal and
vertical differences between pixel values in a neighborhood, and it does this using a kernel.
The cv2.cornerHarris function uses a Sobel operator whose aperture is defined by this
parameter. In plain English, the parameters define how sensitive corner detection is. It must
be between 3 and 31 and be an odd value. With a low (highly sensitive) value of 3, all those
diagonal lines in the black squares of the chessboard will register as corners when they
touch the border of the square. For a higher (less sensitive) value of 23, only the corners of
each square will be detected as corners.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 137 ]

cv2.cornerHarris returns an image in floating-point format. Each value in this image
represents a score for the corresponding pixel in the source image. A moderate or high
score indicates that the pixel is likely to be a corner. Conversely, we can treat pixels with the
lowest scores as non-corners. Consider the following line:

img[dst > 0.01 * dst.max()] = [0, 0, 255]

Here, we select pixels with scores that are at least 1% of the highest score, and we color
these pixels red in the original image. Here is the result:

Great! Nearly all the detected corners are marked in red. The marked points include nearly
all the corners of the chessboard's squares.

If we tweak the second parameter in cv2.cornerHarris, we will see that
smaller regions (for a smaller parameter value) or larger regions (for a
larger parameter value) will be detected as corners. This parameter is
called the block size.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 138 ]

Detecting DoG features and extracting SIFT
descriptors
The preceding technique, which uses cv2.cornerHarris, is great for detecting corners
and has a distinct advantage because corners are corners; they are detected even if the
image is rotated. However, if we scale an image to a smaller or larger size, some parts of the
image may lose or even gain a corner quality.

For example, take a look at the following corner detections in an image of the F1 Italian
Grand Prix track:

Here is the corner detection result with a smaller version of the same image:



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 139 ]

You will notice how the corners are a lot more condensed; however, even though we
gained some corners, we lost others! In particular, let's examine the Variante Ascari
chicane, which looks like a squiggle at the end of the part of the track that runs straight 
from northwest to southeast. In the larger version of the image, both the entrance and the
apex of the double bend were detected as corners. In the smaller image, the apex is not
detected as such. If we further reduce the image, at some scale, we will lose the entrance to
that chicane too.

This loss of features raises an issue; we need an algorithm that works regardless of the scale
of the image. Enter Scale-Invariant Feature Transform (SIFT). While the name may sound
a bit mysterious, now that we know what problem we are trying to solve, it actually makes
sense. We need a function (a transform) that will detect features (a feature transform) and
will not output different results depending on the scale of the image (a scale-invariant
feature transform). Note that SIFT does not detect keypoints (which is done with the
Difference of Gaussians (DoG); instead, it describes the region surrounding them by 
means of a feature vector.

A quick introduction to the DoG is in order. Previously, in Chapter 3, Processing Images
with OpenCV, we talked about low pass filters and blurring operations, and specifically the
cv2.GaussianBlur() function. DoG is the result of applying different Gaussian filters to
the same image. Previously, we applied this type of technique for edge detection, and the
idea is the same here. The final result of a DoG operation contains areas of interest
(keypoints), which are then going to be described through SIFT.

Let's see how DoG and SIFT behave in the following image, which is full of corners and
features:



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 140 ]

Here, the beautiful panorama of Varese (in Lombardy, Italy) gains a new type of fame as a
subject of computer vision. Here is the code that produces this processed image:

import cv2

img = cv2.imread('../images/varese.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)

cv2.drawKeypoints(img, keypoints, img, (51, 163, 236),
                  cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('sift_keypoints', img)
cv2.waitKey()

After the usual imports, we load the image we want to process. Then, we convert the image
into grayscale. By now, you may have gathered that many methods in OpenCV expect a
grayscale image as input. The next step is to create a SIFT detection object and compute the
features and descriptors of the grayscale image:

sift = cv2.xfeatures2d.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)

Behind the scenes, these simple lines of code carry out an elaborate process; we create a
cv2.SIFT object, which uses DoG to detect keypoints and then computes a feature vector
for the surrounding region of each keypoint. As the name of the detectAndCompute
method clearly suggests, two main operations are performed: feature detection and the
computation of descriptors. The return value of the operation is a tuple containing a list of
keypoints and another list of the keypoints' descriptors.

Finally, we process this image by drawing the keypoints on it with the
cv2.drawKeypoints function and then displaying it with the usual cv2.imshow function.
As one of its arguments, the cv2.drawKeypoints function accepts a flag that specifies the
type of visualization we want. Here, we specify
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINT in order to draw a visualization of the
scale and orientation of each keypoint.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 141 ]

Anatomy of a keypoint
Each keypoint is an instance of the cv2.KeyPoint class, which has the following
properties:

The pt (point) property contains the x and y coordinates of the keypoint in the
image.
The size property indicates the diameter of the feature.
The angle property indicates the orientation of the feature, as shown by the
radial lines in the preceding processed image.
The response property indicates the strength of the keypoint. Some features are
classified by SIFT as stronger than others, and response is the property you
would check to evaluate the strength of a feature.
The octave property indicates the layer in the image pyramid where the feature
was found. Let's briefly review the concept of an image pyramid, which we
discussed previously in Chapter 5, Detecting and Recognizing Faces, in
the Conceptualizing Haar cascades section. The SIFT algorithm operates in a similar
fashion to face detection algorithms in that it processes the same image
iteratively but alters the input at each iteration. In particular, the scale of the
image is a parameter that changes at each iteration (octave) of the algorithm.
Thus, the octave property is related to the image scale at which the keypoint
was detected.
Finally, the class_id property can be used to assign a custom identifier to a
keypoint or a group of keypoints.

Detecting Fast Hessian features and
extracting SURF descriptors
Computer vision is a relatively young branch of computer science, so many famous
algorithms and techniques have only been invented recently. SIFT is, in fact, only 21 years
old, having been published by David Lowe in 1999.

SURF is a feature detection algorithm that was published in 2006 by Herbert Bay. SURF is
several times faster than SIFT, and it is partially inspired by it.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 142 ]

Note that both SIFT and SURF are patented algorithms and, for this
reason, are made available only in builds of opencv_contrib where
the OPENCV_ENABLE_NONFREE CMake flag is used.

It is not particularly relevant to this book to understand how SURF works under the hood,
inasmuch as we can use it in our applications and make the best of it. What is important to
understand is that cv2.SURF is an OpenCV class that performs keypoint detection with the
Fast Hessian algorithm and descriptor extraction with SURF, much like the cv2.SIFT class
performs keypoint detection with DoG and descriptor extraction with SIFT.

Also, the good news is that OpenCV provides a standardized API for all its supported
feature detection and descriptor extraction algorithms. Thus, with only trivial changes, we
can adapt our previous code sample to use SURF instead of SIFT. Here is the modified
code, with the changes in bold:

import cv2

img = cv2.imread('../images/varese.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

surf = cv2.xfeatures2d.SURF_create(8000)
keypoints, descriptor = surf.detectAndCompute(gray, None)

cv2.drawKeypoints(img, keypoints, img, (51, 163, 236),
                  cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

cv2.imshow('surf_keypoints', img)
cv2.waitKey()

The parameter to cv2.xfeatures2d.SURF_create is a threshold for the Fast Hessian
algorithm. By increasing the threshold, we can reduce the number of features that will
be retained. With a threshold of 8000, we get the following result:



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 143 ]

Try adjusting the threshold to see how it affects the result. As an exercise, you may want to
build a GUI application with a slider that controls the value of the threshold. This way, a
user can adjust the threshold and see the number of features increase and decrease in an
inversely proportional fashion. We built a GUI application with sliders in Chapter 4, Depth
Estimation and Segmentation, in the Depth estimation with a normal camera section, so you may
want to refer back to that section as a guide.

Next, we'll examine the FAST corner detector, the BRIEF keypoint descriptor, and ORB
(which uses FAST and BRIEF together).

Using ORB with FAST features and BRIEF
descriptors
If SIFT is young, and SURF younger, ORB is in its infancy. ORB was first published in 2011
as a fast alternative to SIFT and SURF.

The algorithm was published in the paper ORB: an efficient alternative to SIFT or SURF,
available in PDF format at http://www.willowgarage.com/sites/default/files/orb_
final.pdf.

http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf
http://www.willowgarage.com/sites/default/files/orb_final.pdf


Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 144 ]

ORB mixes the techniques used in the FAST keypoint detector and the BRIEF keypoint
descriptor, so it is worth taking a quick look at FAST and BRIEF first. Then, we will talk
about brute-force matching – an algorithm used for feature matching – and look at an 
example of feature matching.

FAST
The Features from Accelerated Segment Test (FAST) algorithm works by analyzing
circular neighborhoods of 16 pixels. It marks each pixel in a neighborhood as brighter or
darker than a particular threshold, which is defined relative to the center of the circle. A
neighborhood is deemed to be a corner if it contains a number of contiguous pixels marked
as brighter or darker.

FAST also uses a high-speed test, which can sometimes determine that a neighborhood is
not a corner by checking just 2 or 4 pixels instead of 16. To understand how this test works,
let's take a look at the following diagram, taken from the OpenCV documentation:

Here, we can see a 16-pixel neighborhood at two different magnifications. The pixels at
positions 1, 5, 9, and 13 correspond to the four cardinal points at the edge of the circular
neighborhood. If the neighborhood is a corner, we expect that out of these four pixels,
exactly three or exactly one will be brighter than the threshold. (Another way of saying this
is that exactly one or exactly three of them will be darker than the threshold.) If exactly two
of them are brighter than the threshold, then we have an edge, not a corner. If exactly four
or exactly zero of them are brighter than the threshold, then we have a relatively uniform
neighborhood that is neither a corner nor an edge.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 145 ]

FAST is a clever algorithm, but it's not devoid of weaknesses, and to compensate for these
weaknesses, developers analyzing images can implement a machine learning approach in
order to feed a set of images (relevant to a given application) to the algorithm so that
parameters such as the threshold are optimized. Whether the developer specifies 
parameters directly or provides a training set for a machine learning approach, FAST is an
algorithm that is sensitive to the developer's input, perhaps more so than SIFT.

BRIEF
Binary Robust Independent Elementary Features (BRIEF), on the other hand, is not a
feature detection algorithm, but a descriptor. Let's delve deeper into the concept of what a
descriptor is, and then look at BRIEF.

When we previously analyzed images with SIFT and SURF, the heart of the entire process
was the call to the detectAndCompute function. This function performs two different steps
– detection and computation – and they return two different results, coupled in a tuple.

The result of detection is a set of keypoints; the result of the computation is a set of
descriptors for those keypoints. This means that OpenCV's cv2.SIFT and cv2.SURF
classes implement algorithms for both detection and description. Remember, though, that
the original SIFT and SURF are not feature detection algorithms. OpenCV's
cv2.SIFT implements DoG feature detection plus SIFT description, while OpenCV's
cv2.SURF implements Fast Hessian feature detection plus SURF description.

Keypoint descriptors are a representation of the image that serves as the gateway to feature
matching because you can compare the keypoint descriptors of two images and find
commonalities.

BRIEF is one of the fastest descriptors currently available. The theory behind BRIEF is quite
complicated, but suffice it to say that BRIEF adopts a series of optimizations that make it a
very good choice for feature matching.

Brute-force matching
A brute-force matcher is a descriptor matcher that compares two sets of keypoint
descriptors and generates a result that is a list of matches. It is called brute-force because
little optimization is involved in the algorithm. For each keypoint descriptor in the first set,
the matcher makes comparisons to every keypoint descriptor in the second set. Each
comparison produces a distance value and the best match can be chosen on the basis of
least distance.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 146 ]

More generally, in computing, the term brute-force is associated with an approach that
prioritizes the exhaustion of all possible combinations (for example, all the possible
combinations of characters to crack a password of a known length). Conversely, an
algorithm that prioritizes speed might skip some possibilities and try to take a shortcut to
the solution that seems the most plausible.

OpenCV provides a cv2.BFMatcher class that supports several approaches to brute-force
feature matching.

Matching a logo in two images
Now that we have a general idea of what FAST and BRIEF are, we can understand why the
team behind ORB (composed of Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R.
Bradski) chose these two algorithms as a foundation for ORB.

In their paper, the authors aim to achieve the following results:

The addition of a fast and accurate orientation component to FAST
The efficient computation of oriented BRIEF features
Analysis of variance and correlation of oriented BRIEF features
A learning method to decorrelate BRIEF features under rotational invariance,
leading to better performance in nearest-neighbor applications

The main points are quite clear: ORB aims to optimize and speed up operations, including
the very important step of utilizing BRIEF in a rotation-aware fashion so that matching is
improved, even in situations where a training image has a very different rotation to the
query image.

At this stage, though, perhaps you have had enough of the theory and want to sink your
teeth in to some feature matching, so let's look at some code. The following script attempts
to match features in a logo to the features in a photograph that contain the logo:

import cv2
from matplotlib import pyplot as plt

# Load the images.
img0 = cv2.imread('../images/nasa_logo.png',
                  cv2.IMREAD_GRAYSCALE)
img1 = cv2.imread('../images/kennedy_space_center.jpg',
                  cv2.IMREAD_GRAYSCALE)

# Perform ORB feature detection and description.
orb = cv2.ORB_create()



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 147 ]

kp0, des0 = orb.detectAndCompute(img0, None)
kp1, des1 = orb.detectAndCompute(img1, None)

# Perform brute-force matching.
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des0, des1)

# Sort the matches by distance.
matches = sorted(matches, key=lambda x:x.distance)

# Draw the best 25 matches.
img_matches = cv2.drawMatches(
    img0, kp0, img1, kp1, matches[:25], img1,
    flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

# Show the matches.
plt.imshow(img_matches)
plt.show()

Let's examine this code step by step. After the usual imports, we load two images (the
query image and the scene) in grayscale format. Here is the query image, which is the
NASA logo:

Here is the photo of the scene, which is the Kennedy Space Center:



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 148 ]

Now, we proceed to create the ORB feature detector and descriptor:

# Perform ORB feature detection and description.
orb = cv2.ORB_create()
kp0, des0 = orb.detectAndCompute(img0, None)
kp1, des1 = orb.detectAndCompute(img1, None)

In a similar fashion to what we did with SIFT and SURF, we detect and compute the
keypoints and descriptors for both images.

From here, the concept is pretty simple: iterate through the descriptors and determine
whether they are a match or not, and then calculate the quality of this match (distance) and
sort the matches so that we can display the top n matches with a degree of confidence that
they are, in fact, matching features on both images. cv2.BFMatcher does this for us:

# Perform brute-force matching.
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des0, des1)

# Sort the matches by distance.
matches = sorted(matches, key=lambda x:x.distance)

At this stage, we already have all the information we need, but as computer vision
enthusiasts, we place quite a bit of importance on visually representing data, so let's draw
these matches in a matplotlib chart:

# Draw the best 25 matches.
img_matches = cv2.drawMatches(
    img0, kp0, img1, kp1, matches[:25], img1,
    flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

# Show the matches.
plt.imshow(img_matches)
plt.show()

Python's slicing syntax is quite robust. If the matches list contains fewer
than 25 entries, the matches[:25] slicing command will run without
problems and give us a list with just as many elements as the original.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 149 ]

The result is as follows:

You might think that this is a disappointing result. Indeed, we can see that most of the
matches are false matches. Unfortunately, this is quite typical. To improve our results, we
need to apply additional techniques to filter out bad matches. We'll turn our attention to
this task next.

Filtering matches using K-Nearest
Neighbors and the ratio test
Imagine that a large group of renowned philosophers asks you to judge their debate on a
question of great importance to life, the universe, and everything. You listen carefully as
each philosopher speaks in turn. Finally, when all the philosophers have exhausted all their
lines of argument, you review your notes and perceive two things, as follows:

Every philosopher disagrees with every other
No one philosopher is much more convincing than the others



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 150 ]

From your first observation, you infer that at most one of the philosophers is right; however,
it is possible that all the philosophers could be wrong. Then, from your second observation,
you begin to fear that you are at risk of picking a philosopher who is wrong, even if one of
the philosophers is correct. Any way you look at it, these people have made you late for
dinner. You call it a tie and say that the debate's all-important question remains unresolved.

We can compare our imaginary problem of judging the philosophers' debate to our
practical problem of filtering out bad keypoint matches.

First, let's assume that each keypoint in our query image has, at most, one correct match in
the scene. By implication, if our query image is the NASA logo, we assume that the other
image – the scene – contains, at most, one NASA logo. Given that a query keypoint has, at
most, one correct or good match, when we consider all possible matches, we are primarily
observing bad matches. Thus, a brute-force matcher, which computes a distance score for
every possible match, can give us plenty of observations of the distance scores for bad
matches. We expect that a good match will have a significantly better (lower) distance score
than the numerous bad matches, so the scores for the bad matches can help us pick a
threshold for a good match. Such a threshold does not necessarily generalize well across
different query keypoints or different scenes, but at least it helps us on a case-by-case basis.

Now, let's consider the implementation of a modified brute-force matching algorithm that
adaptively chooses a distance threshold in the manner we have described. In the previous
section's code sample, we used the match method of the cv2.BFMatcher class in order to
get a list containing the single best (least-distance) match for each query keypoint. By doing
so, we discarded information about the distance scores of all the worse possible matches –
the kind of information we need for our adaptive approach. Fortunately, cv2.BFMatcher
also provides a knnMatch method, which accepts an argument, k, that specifies the
maximum number of best (least-distance) matches that we want to retain for each query
keypoint. (In some cases, we may get fewer matches than the maximum.) KNN stands for
k-nearest neighbors.

We will use the knnMatch method to request a list of the two best matches for each query
keypoint. Based on our assumption that each query keypoint has, at most, one correct
match, we are confident that the second-best match is wrong. We multiply the second-best
match's distance score by a value less than 1 in order to obtain the threshold.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 151 ]

Then, we accept the best match as a good match only if its distant score is less than the
threshold. This approach is known as the ratio test, and it was first proposed by David
Lowe, the author of the SIFT algorithm. He describes the ratio test in his paper, Distinctive
Image Features from Scale-Invariant Keypoints, which is available
at https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf. Specifically, in the Application to
object recognition section, he states the following:

"The probability that a match is correct can be determined by taking the ratio of the
distance from the closest neighbor to the distance of the second closest."

We can load the images, detect keypoints, and compute ORB descriptors in the same way
as we did in the previous section's code sample. Then, we can perform brute-force KNN
matching using the following two lines of code:

# Perform brute-force KNN matching.
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False)
pairs_of_matches = bf.knnMatch(des0, des1, k=2)

knnMatch returns a list of lists; each inner list contains at least one match and no more than
k matches, sorted from best (least distance) to worst. The following line of code sorts the
outer list based on the distance score of the best matches:

# Sort the pairs of matches by distance.
pairs_of_matches = sorted(pairs_of_matches, key=lambda x:x[0].distance)

Let's draw the top 25 best matches, along with any second-best matches that knnMatch
may have paired with them. We can't use the cv2.drawMatches function because it only
accepts a one-dimensional list of matches; instead, we must use cv2.drawMatchesKnn.
The following code is used to select, draw, and show the matches:

# Draw the 25 best pairs of matches.
img_pairs_of_matches = cv2.drawMatchesKnn(
    img0, kp0, img1, kp1, pairs_of_matches[:25], img1,
    flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

# Show the pairs of matches.
plt.imshow(img_pairs_of_matches)
plt.show()

https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 152 ]

So far, we have not filtered out any bad matches – and, indeed, we have deliberately
included the second-best matches, which we believe to be bad – so the result looks a mess.
Here it is:

Now, let's apply the ratio test. We will set the threshold at 0.8 times the distance score of the
second-best match. If knnMatch has failed to provide a second-best match, we reject the
best match anyway because we are unable to apply the test. The following code applies
these conditions and provides us with a list of best matches that passed the test:

# Apply the ratio test.
matches = [x[0] for x in pairs_of_matches
           if len(x) > 1 and x[0].distance < 0.8 * x[1].distance]

Having applied the ratio test, now we are only dealing with best matches (not pairs of best
and second-best matches), so we can draw them with cv2.drawMatches instead of
cv2.drawMatchesKnn. Again, we will select the top 25 matches from the list. The
following code is used to select, draw, and show the matches:

# Draw the best 25 matches.
img_matches = cv2.drawMatches(
    img0, kp0, img1, kp1, matches[:25], img1,
    flags=cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS)

# Show the matches.
plt.imshow(img_matches)
plt.show()



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 153 ]

Here, we can see the matches that passed the ratio test:

Comparing this output image to the one in the previous section, we can see that KNN and
the ratio test have allowed us to filter out many bad matches. The remaining matches are
not perfect but nearly all of them point to the correct region – the NASA logo on the side of
the Kennedy Space Center.

We have made a promising start. Next, we will replace the brute-force matcher with a faster
matcher called FLANN. After that, we will learn how to describe a set of matches in terms
of homography – that is, a 2D transformation matrix that expresses the position, rotation,
scale, and other geometric characteristics of the matched object.

Matching with FLANN
FLANN stands for Fast Library for Approximate Nearest Neighbors. It is an open source
library under the permissive 2-clause BSD license. The official internet home of FLANN is
http://www.cs.ubc.ca/research/flann/. The following is a quote from the website:

"FLANN is a library for performing fast approximate nearest neighbor searches in high-
dimensional spaces. It contains a collection of algorithms we found to work best for the
nearest neighbor search and a system for automatically choosing the best algorithm and
optimum parameters depending on the dataset.
FLANN is written in C++ and contains bindings for the following languages: C,
MATLAB, and Python."

http://www.cs.ubc.ca/research/flann/


Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 154 ]

In other words, FLANN has a big toolbox, it knows how to choose the right tools for the
job, and it speaks several languages. These features make the library fast and convenient.
Indeed, FLANN's authors claim that it is 10 times faster than other nearest-neighbor search
software for many datasets.

As a standalone library, FLANN is available on GitHub at
https://github.com/mariusmuja/flann/. However, we will use FLANN as part of
OpenCV because OpenCV provides a handy wrapper for it.

To begin our practical example of FLANN matching, let's import NumPy, OpenCV, and
Matplotlib, and load two images from files. Here is the relevant code:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img0 = cv2.imread('../images/gauguin_entre_les_lys.jpg',
                  cv2.IMREAD_GRAYSCALE)
img1 = cv2.imread('../images/gauguin_paintings.png',
                  cv2.IMREAD_GRAYSCALE)

Here is the first image – the query image – that our script is loading:

https://github.com/mariusmuja/flann/


Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 155 ]

This work of art is Entre les lys (Among the lilies), painted by Paul Gauguin in 1889. We will
search for matching keypoints in a larger image that contains multiple works by Gauguin,
alongside some haphazard shapes drawn by one of the authors of this book. Here is
the larger image:



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 156 ]

Within the larger image, Entre les lys appears in the third column, third row. The query
image and the corresponding region of the larger image are not identical; they depict Entre
les lys in slightly different colors and at a different scale. Nonetheless, this should be an easy
case for our matcher.

Let's detect the necessary keypoints and extract our features using the cv2.SIFT class:

# Perform SIFT feature detection and description.
sift = cv2.xfeatures2d.SIFT_create()
kp0, des0 = sift.detectAndCompute(img0, None)
kp1, des1 = sift.detectAndCompute(img1, None)

So far, the code should seem familiar, since we have already dedicated several sections of
this chapter to SIFT and other descriptors. In our previous examples, we fed the descriptors
to cv2.BFMatcher for brute-force matching. This time, we will use
cv2.FlannBasedMatcher instead. The following code performs FLANN-based matching
with custom parameters:

# Define FLANN-based matching parameters.
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)

# Perform FLANN-based matching.
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des0, des1, k=2)

Here, we can see that the FLANN matcher takes two parameters: an indexParams object
and a searchParams object. These parameters, passed in the form of dictionaries in Python
(and structs in C++), determine the behavior of the index and search objects that are used
internally by FLANN to compute the matches. We have chosen parameters that offer a
reasonable balance between accuracy and processing speed. Specifically, we are using a
kernel density tree (kd-tree) indexing algorithm with five trees, which FLANN can process
in parallel. (The FLANN documentation recommends between one tree, which would offer
no parallelism, and 16 trees, which would offer a high degree of parallelism if the system
could exploit it.)

We are performing 50 checks or traversals of each tree. A greater number of checks can
provide greater accuracy but at a greater computational cost.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 157 ]

After performing FLANN-based matching, we apply Lowe's ratio test with a multiplier of
0.7. To demonstrate a different coding style, we will use the result of the ratio test in a
slightly different way compared to how we did in the previous section's code sample.
Previously, we assembled a new list with just the good matches in it. This time, we will
assemble a list called mask_matches, in which each element is a sublist of length k (the
same k that we passed to knnMatch). If a match is good, we set the corresponding element
of the sublist to 1; otherwise, we set it to 0.

For example, if we have mask_matches = [[0, 0], [1, 0]], this means that we have
two matched keypoints; for the first keypoint, the best and second-best matches are both
bad, while for the second keypoint, the best match is good but the second-best match is
bad. Remember, we assume that all the second-best matches are bad. We use the following
code to apply the ratio test and build the mask:

# Prepare an empty mask to draw good matches.
mask_matches = [[0, 0] for i in range(len(matches))]

# Populate the mask based on David G. Lowe's ratio test.
for i, (m, n) in enumerate(matches):
    if m.distance < 0.7 * n.distance:
        mask_matches[i]=[1, 0]

Now, it is time to draw and show the good matches. We can pass our mask_matches list
to cv2.drawMatchesKnn as an optional argument, as shown in bold in the following code
segment:

# Draw the matches that passed the ratio test.
img_matches = cv2.drawMatchesKnn(
    img0, kp0, img1, kp1, matches, None,
    matchColor=(0, 255, 0), singlePointColor=(255, 0, 0),
    matchesMask=mask_matches, flags=0)

# Show the matches.
plt.imshow(img_matches)
plt.show()



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 158 ]

cv2.drawMatchesKnn only draws the matches that we marked as good (with a value of 1)
in our mask. Let's unveil the result. Our script produces the following visualization of the
FLANN-based matches:

This is an encouraging picture: it appears that nearly all the matches fall in the right places.
Next, let's try to reduce this type of result to a more succinct geometric representation – a
homography – which would describe the pose of a whole matched object rather than a
bunch of disconnected matched points.

Performing homography with FLANN-based
matches
First of all, what is homography? Let's read a definition from the internet:

"A relation between two figures, such that to any point of the one corresponds one and but
one point in the other, and vice versa. Thus, a tangent line rolling on a circle cuts two
fixed tangents of the circle in two sets of points that are homographic."



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 159 ]

If you – like the authors of this book – are none the wiser from the preceding definition, you
will probably find the following explanation a bit clearer: homography is a condition in
which two figures find each other when one is a perspective distortion of the other.

First, let's take a look at what we want to achieve so that we can fully understand what
homography is. Then, we will go through the code.

Imagine that we want to search for the following tattoo:

We, as human beings, can easily locate the tattoo in the following image, despite there
being a difference in rotation:



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 160 ]

As an exercise in computer vision, we want to write a script that produces the following
visualization of keypoint matches and the homography:

As shown in the preceding screenshot, we took the subject in the first image, correctly
identified it in the second image, drew matching lines between the keypoints, and even
drew a white border showing the perspective deformation of the subject in the second
image relative to the first image.

You might have guessed – correctly – that the script's implementation starts by importing
libraries, reading images in grayscale format, detecting features, and computing SIFT
descriptors. We did all of this in our previous examples, so we will omit that here. Let's take
a look at what we do next:

We proceed by assembling a list of matches that pass Lowe's ratio test, as shown1.
in the following code:

# Find all the good matches as per Lowe's ratio test.
good_matches = []
for m, n in matches:
    if m.distance < 0.7 * n.distance:
        good_matches.append(m)



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 161 ]

Technically, we can calculate the homography with as few as four matches.2.
However, if any of these four matches is flawed, it will throw off the accuracy of
the result. A more practical minimum is 10. Given the extra matches, the
homography-finding algorithm can discard some outliers in order to produce a
result that closely fits a substantial subset of the matches. Thus, we proceed to
check whether we have at least 10 good matches:

MIN_NUM_GOOD_MATCHES = 10

if len(good_matches) >= MIN_NUM_GOOD_MATCHES:

If this condition has been satisfied, we look up the 2D coordinates of the matched3.
keypoints and place these coordinates in two lists of floating-point coordinate
pairs. One list contains the keypoint coordinates in the query image, while the
other list contains the matching keypoint coordinates in the scene:

    src_pts = np.float32(
        [kp0[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
    dst_pts = np.float32(
        [kp1[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)

Now, we find the homography:4.

    M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
    mask_matches = mask.ravel().tolist()

Note that we create a mask_matches list, which will be used in the final drawing
of the matches so that only points lying within the homography will have
matching lines drawn.

At this stage, we have to perform a perspective transformation, which takes the5.
rectangular corners of the query image and projects them into the scene so that
we can draw the border:

    h, w = img0.shape
    src_corners = np.float32(
        [[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2)
    dst_corners = cv2.perspectiveTransform(src_corners, M)
    dst_corners = dst_corners.astype(np.int32)

    # Draw the bounds of the matched region based on the homography.
    num_corners = len(dst_corners)
    for i in range(num_corners):
        x0, y0 = dst_corners[i][0]
        if i == num_corners - 1:
            next_i = 0



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 162 ]

        else:
            next_i = i + 1
        x1, y1 = dst_corners[next_i][0]
        cv2.line(img1, (x0, y0), (x1, y1), 255, 3, cv2.LINE_AA)

Then, we proceed to draw the keypoints and show the visualization, as per our previous
examples.

A sample application – tattoo forensics
Let's conclude this chapter with a real-life (or perhaps fantasy-life) example. Imagine you
are working for the Gotham forensics department and you need to identify a tattoo. You
have the original picture of a criminal's tattoo (perhaps captured in CCTV footage), but you
don't know the identity of the person. However, you possess a database of tattoos, indexed
with the name of the person that the tattoo belongs to.

Let's divide this task into two parts:

Build a database by saving image descriptors to files
Load the database and scan for matches between a query image's descriptors and
the descriptors in the database

We will cover these tasks in the next two subsections.

Saving image descriptors to file
The first thing we will do is save the image descriptors to an external file. This way, we
don't have to recreate the descriptors every time we want to scan two images for matches.

For the purposes of our example, let's scan a folder for images and create the corresponding
descriptor files so that we have them readily available for future searches. To create
descriptors, we will use a process we have already used a number of times in this chapter:
namely, load an image, create a feature detector, detect features, and compute descriptors.
To save the descriptors to a file, we will use a handy method of NumPy arrays called save,
which dumps array data into a file in an optimized way.

The pickle module, in the Python standard library, provides more
general-purpose serialization functionality that supports any Python
object and not just NumPy arrays. However, NumPy's array serialization
is a good choice for numeric data.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 163 ]

Let's break our script up into functions. The main function will be
named create_descriptors (plural, descriptors), and it will iterate over the files in a
given folder. For each file, create_descriptors will call a helper function
named create_descriptor (singular, descriptor), which will compute and save our
descriptors for the given image file. Let's get started:

First, here is the implementation of create_descriptors:1.

import os

import numpy as np
import cv2

def create_descriptors(folder):
    feature_detector = cv2.xfeatures2d.SIFT_create()
    files = []
    for (dirpath, dirnames, filenames) in os.walk(folder):
        files.extend(filenames)
    for f in files:
        create_descriptor(folder, f, feature_detector)

Note that create_descriptors creates the feature detector because we only
need to do this once, not every time we load a file. The helper
function, create_descriptor, receives the feature detector as an argument.

Now, let's look at the latter function's implementation:2.

def create_descriptor(folder, image_path, feature_detector):
    if not image_path.endswith('png'):
        print('skipping %s' % image_path)
        return
    print('reading %s' % image_path)
    img = cv2.imread(os.path.join(folder, image_path),
                     cv2.IMREAD_GRAYSCALE)
    keypoints, descriptors = feature_detector.detectAndCompute(
        img, None)
    descriptor_file = image_path.replace('png', 'npy')
    np.save(os.path.join(folder, descriptor_file), descriptors)

Note that we save the descriptor files in the same folder as the images. Moreover,
we assume that the image files have the png extension. To make the script more
robust, you could modify it so that it supports additional image file extensions
such as jpg. If a file has an unexpected extension, we skip it because it might be a
descriptor file (from a previous run of the script) or some other non-image file.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 164 ]

We have finished implementing the functions. To complete the script, we will3.
call create_descriptors with a folder name as an argument:

folder = 'tattoos'
create_descriptors(folder)

When we run this script, it produces the necessary descriptor files in NumPy's array file
format, with the file extension npy. These files constitute our database of tattoo descriptors,
indexed by name. (Each filename is a person's name.) Next, we'll write a separate script so
that we can run a query against this database.

Scanning for matches
Now that we have descriptors saved to files, we just need to perform matching against each
set of descriptors to determine which set best matches our query image.

This is the process we will put in place:

Load a query image (query.png).1.
Scan the folder containing descriptor files. Print the names of the descriptor files.2.
Create SIFT descriptors for the query image.3.
For each descriptor file, load the SIFT descriptors and find FLANN-based4.
matches. Filter the matches based on the ratio test. Print the person's name and
the number of matches. If the number of matches exceeds an arbitrary threshold,
print that the person is a suspect. (Remember, we are investigating a crime.)
Print the name of the prime suspect (the one with the most matches).5.

Let's consider the implementation:

First, the following code block loads the query image:1.

import os

import numpy as np
import cv2

# Read the query image.
folder = 'tattoos'
query = cv2.imread(os.path.join(folder, 'query.png'),
                   cv2.IMREAD_GRAYSCALE)



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 165 ]

We proceed to assemble and print a list of the descriptor files:2.

# create files, images, descriptors globals
files = []
images = []
descriptors = []
for (dirpath, dirnames, filenames) in os.walk(folder):
    files.extend(filenames)
    for f in files:
        if f.endswith('npy') and f != 'query.npy':
            descriptors.append(f)
print(descriptors)

We set up our typical cv2.SIFT and cv2.FlannBasedMatcher objects, and we3.
generate descriptors of the query image:

# Create the SIFT detector.
sift = cv2.xfeatures2d.SIFT_create()

# Perform SIFT feature detection and description on the
# query image.
query_kp, query_ds = sift.detectAndCompute(query, None)

# Define FLANN-based matching parameters.
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)

# Create the FLANN matcher.
flann = cv2.FlannBasedMatcher(index_params, search_params)

Now, we search for suspects, whom we define as people with at least 10 good4.
matches for the query tattoo. Our search entails iterating over the descriptor files,
loading the descriptors, performing FLANN-based matching, and filtering the
matches based on the ratio test. We print a result for each person (each descriptor
file):

# Define the minimum number of good matches for a suspect.
MIN_NUM_GOOD_MATCHES = 10

greatest_num_good_matches = 0
prime_suspect = None

print('>> Initiating picture scan...')
for d in descriptors:
    print('--------- analyzing %s for matches ------------' % d)
    matches = flann.knnMatch(



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 166 ]

        query_ds, np.load(os.path.join(folder, d)), k=2)
    good_matches = []
    for m, n in matches:
        if m.distance < 0.7 * n.distance:
            good_matches.append(m)
    num_good_matches = len(good_matches)
    name = d.replace('.npy', '').upper()
    if num_good_matches >= MIN_NUM_GOOD_MATCHES:
        print('%s is a suspect! (%d matches)' % \
            (name, num_good_matches))
        if num_good_matches > greatest_num_good_matches:
            greatest_num_good_matches = num_good_matches
            prime_suspect = name
    else:
        print('%s is NOT a suspect. (%d matches)' % \
            (name, num_good_matches))

Note the use of the np.load method, which loads a specified NPY file into
a NumPy array.

In the end, we print the name of the prime suspect (if we found a suspect, that5.
is):

if prime_suspect is not None:
    print('Prime suspect is %s.' % prime_suspect)
else:
    print('There is no suspect.')

Running the preceding script produces the following output:

>> Initiating picture scan...
--------- analyzing anchor-woman.npy for matches ------------
ANCHOR-WOMAN is NOT a suspect. (2 matches)
--------- analyzing anchor-man.npy for matches ------------
ANCHOR-MAN is a suspect! (44 matches)
--------- analyzing lady-featherly.npy for matches ------------
LADY-FEATHERLY is NOT a suspect. (2 matches)
--------- analyzing steel-arm.npy for matches ------------
STEEL-ARM is NOT a suspect. (0 matches)
--------- analyzing circus-woman.npy for matches ------------
CIRCUS-WOMAN is NOT a suspect. (1 matches)
Prime suspect is ANCHOR-MAN.

If we wanted, we could represent the matches and the homography graphically, as we did
in the previous section.



Retrieving Images and Searching Using Image Descriptors Chapter 6

[ 167 ]

Summary
In this chapter, we learned about detecting keypoints, computing keypoint descriptors,
matching these descriptors, filtering out bad matches, and finding the homography
between two sets of matching keypoints. We explored a number of algorithms that are
available in OpenCV that can be used to accomplish these tasks, and we applied these
algorithms to a variety of images and use cases.

If we combine our new knowledge of keypoints with additional knowledge about cameras
and perspective, we can track objects in 3D space. This will be the topic of Chapter 9,
Camera Models and Augmented Reality. You can skip ahead to that chapter if you are
particularly keen to reach the third dimension.

If, instead, you think the next logical step is to round off your knowledge of two-
dimensional solutions for object detection, recognition, and tracking, you can continue
sequentially with Chapter 7, Building Custom Object Detectors, and then Chapter 8, Tracking
Objects. It is good to know of a combination 2D and 3D techniques so that you can choose
an approach that offers the right kind of output and the right computational speed for a
given application.



7
Building Custom Object

Detectors
This chapter delves deeper into the concept of object detection, which is one of the most
common challenges in computer vision. Having come this far in the book, you are perhaps
wondering when you will be able to put computer vision into practice on the streets. Do
you dream of building a system to detect cars and people? Well, you are not too far from
your goal, actually.

We have already looked at some specific cases of object detection and recognition in
previous chapters. We focused on upright, frontal human faces in Chapter 5, Detecting and
Recognizing Faces, and on objects with corner-like or blob-like features in Chapter 6,
Retrieving Images and Searching Using Image Descriptors. Now, in the current chapter, we will
explore algorithms that have a good ability to generalize or extrapolate, in the sense that
they can cope with the real-world diversity that exists within a given class of object. For
example, different cars have different designs, and people can appear to be different shapes
depending on the clothes they wear.

Specifically, we will pursue the following objectives:

Learning about another kind of feature descriptor: the histogram of oriented
gradients (HOG) descriptor.
Understanding non-maximum suppression, also called non-maxima
suppression (NMS), which helps us choose the best of an overlapping set of
detection windows.



Building Custom Object Detectors Chapter 7

[ 169 ]

Gaining a high-level understanding of support vector machines (SVMs). These
general-purpose classifiers are based on supervised machine learning, in a way
that is similar to linear regression.
Detecting people with a pre-trained classifier based on HOG descriptors.
Training a bag-of-words (BoW) classifier to detect a car. For this sample, we will
work with a custom implementation of an image pyramid, a sliding window,
and NMS so that we can better understand the inner workings of these
techniques.

Most of the techniques in this chapter are not mutually exclusive; rather, they work
together as components of a detector. By the end of the chapter, you will know how to train
and use classifiers that have practical applications on the streets!

Technical requirements
This chapter uses Python, OpenCV, and NumPy. Please refer back to Chapter 1, Setting Up
OpenCV, for installation instructions.

The completed code for this chapter can be found in this book's GitHub repository, at
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-
Python-Third-Edition, in the chapter07 folder. Sample images can be found in the
repository in the images folder.

Understanding HOG descriptors
HOG is a feature descriptor, so it belongs to the same family of algorithms as scale-
invariant feature transform (SIFT), speeded-up robust features (SURF), and Oriented
FAST and rotated BRIEF (ORB), which we covered in Chapter 6, Retrieving Images and
Searching Using Image Descriptors. Like other feature descriptors, HOG is capable of
delivering the type of information that is vital for feature matching, as well as for object
detection and recognition. Most commonly, HOG is used for object detection. The
algorithm – and, in particular, its use as a people detector – was popularized by Navneet
Dalal and Bill Triggs in their paper Histograms of Oriented Gradients for Human Detection
(INRIA, 2005), which is available online at https://lear.inrialpes.fr/people/triggs/
pubs/Dalal-cvpr05.pdf.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf


Building Custom Object Detectors Chapter 7

[ 170 ]

HOG's internal mechanism is really clever; an image is divided into cells and a set of
gradients is calculated for each cell. Each gradient describes the change in pixel intensities
in a given direction. Together, these gradients form a histogram representation of the cell.
We encountered a similar approach when we studied face recognition with the local binary
pattern histogram (LBPH) in Chapter 5, Detecting and Recognizing Faces.

Before diving into the technical details of how HOG works, let's first take a look at how
HOG sees the world.

Visualizing HOG
Carl Vondrick, Aditya Khosla, Hamed Pirsiavash, Tomasz Malisiewicz, and Antonio
Torralba have developed a HOG visualization technique called HOGgles (HOG goggles).
For a summary of HOGgles, as well as links to code and publications, refer to Carl
Vondrick's MIT web page at http://www.cs.columbia.edu/~vondrick/ihog/index.html.
As one of their test images, Vondrick et al. use the following photograph of a truck:

http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html
http://www.cs.columbia.edu/~vondrick/ihog/index.html


Building Custom Object Detectors Chapter 7

[ 171 ]

Vondrick et al. produce the following visualization of the HOG descriptors, based on an
approach from Dalal and Triggs' earlier paper:

Then, applying HOGgles, Vondrick et al. invert the feature description algorithm to
reconstruct the image of the truck as HOG sees it, as shown here:



Building Custom Object Detectors Chapter 7

[ 172 ]

In both of these two visualizations, you can see that HOG has divided the image into cells,
and you can easily recognize the wheels and the main structure of the vehicle. In the first
visualization, the calculated gradients for each cell are visualized as a set of crisscrossing
lines that sometimes look like an elongated star; the star's longer axes represent stronger
gradients. In the second visualization, the gradients are visualized as a smooth transition in
brightness, along various axes in a cell.

Now, let's give further consideration to the way HOG works, and the way it can contribute
to an object detection solution.

Using HOG to describe regions of an image
For each HOG cell, the histogram contains a number of bins equal to the number of
gradients or, in other words, the number of axis directions that HOG considers. After
calculating all the cells' histograms, HOG processes groups of histograms to produce
higher-level descriptors. Specifically, the cells are grouped into larger regions, called blocks.
These blocks can be made of any number of cells, but Dalal and Triggs found that 2x2 cell
blocks yielded the best results when performing people detection. A block-wide vector is
created so that it can be normalized, compensating for local variations in illumination and
shadowing. (A single cell is too small a region to detect such variations.) This normalization
improves a HOG-based detector's robustness, with respect to variations in lighting
conditions.

Like other detectors, a HOG-based detector needs to cope with variations in objects'
location and scale. The need to search in various locations is addressed by moving a fixed-
size sliding window across an image. The need to search at various scales is addressed by
scaling the image to various sizes, forming a so-called image pyramid. We studied these
techniques previously in Chapter 5, Detecting and Recognizing Faces, specifically in the
Conceptualizing Haar cascades section. However, let's elaborate on one difficulty: how to
handle multiple detections in overlapping windows.

Suppose we are using a sliding window to perform people detection on an image. We slide
our window in small steps, just a few pixels at a time, so we expect that it will frame any
given person multiple times. Assuming that overlapping detections are indeed one person,
we do not want to report multiple locations but, rather, only one location that we believe to
be correct. In other words, even if a detection at a given location has a good confidence
score, we might reject it if an overlapping detection has a better confidence score; thus, from
a set of overlapping detections, we would choose the one with the best confidence score.

This is where NMS comes into play. Given a set of overlapping regions, we can suppress
(or reject) all the regions for which our classifier did not produce a maximal score.



Building Custom Object Detectors Chapter 7

[ 173 ]

Understanding NMS
The concept of NMS might sound simple. From a set of overlapping solutions, just pick the
best one! However, the implementation is more complex than you might initially think.
Remember the image pyramid? Overlapping detections can occur at different scales. We
must gather up all our positive detections, and convert their bounds back to a common
scale before we check for overlap. A typical implementation of NMS takes the following
approach:

Construct an image pyramid.1.
Scan each level of the pyramid with the sliding window approach, for object2.
detection. For each window that yields a positive detection (beyond a certain
arbitrary confidence threshold), convert the window back to the original image's
scale. Add the window and its confidence score to a list of positive detections.
Sort the list of positive detections by order of descending confidence score so that3.
the best detections come first in the list.
For each window, W, in the list of positive detections, remove all subsequent4.
windows that significantly overlap with W. We are left with a list of positive
detections that satisfy the criterion of NMS.

Besides NMS, another way to filter the positive detections is to eliminate
any subwindows. When we speak of a subwindow (or subregion), we
mean a window (or region in an image) that is entirely contained inside
another window (or region). To check for subwindows, we simply need to
compare the corner coordinates of various window rectangles. We will
take this simple approach in our first practical example, in the Detecting
people with HOG descriptors section. Optionally, NMS and suppression of
subwindows can be combined.

Several of these steps are iterative, so we have an interesting optimization problem on our
hands. A fast sample implementation in MATLAB is provided by Tomasz Malisiewicz at
http://www.computervisionblog.com/2011/08/blazing-fast-nmsm-from-exemplar-svm.h

tml. A port of this sample implementation to Python is provided by Adrian Rosebrock at
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
. We will build atop the latter sample later in this chapter, in the Detecting a car in a scene
section.

Now, how do we determine the confidence score for a window? We need a classification
system that determines whether a certain feature is present or not, and a confidence score
for this classification. This is where SVMs come into play.

http://www.computervisionblog.com/2011/08/blazing-fast-nmsm-from-exemplar-svm.html
http://www.computervisionblog.com/2011/08/blazing-fast-nmsm-from-exemplar-svm.html
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/


Building Custom Object Detectors Chapter 7

[ 174 ]

Understanding SVMs
Without going into details of how an SVM works, let's just try to grasp what it can help us
accomplish in the context of machine learning and computer vision. Given labeled training
data, an SVM learns to classify the same kind of data by finding an optimal hyperplane,
which, in plain English, is the plane that divides differently labeled data by the largest
possible margin. To aid our understanding, let's consider the following diagram, which is
provided by Zach Weinberg under the Creative Commons Attribution-Share Alike 3.0
Unported License:

Hyperplane H1 (shown as a green line) does not divide the two classes (the black dots
versus the white dots). Hyperplanes H2 (shown as a blue line) and H3 (shown as a red line)
both divide the classes; however, only hyperplane H3 divides the classes by a maximal
margin.

Let's suppose we are training an SVM as a people detector. We have two classes, person and
non-person. As training samples, we provide vectors of HOG descriptors of various
windows that do or do not contain a person. These windows may come from various
images. The SVM learns by finding the optimal hyperplane that maximally divides the
multidimensional HOG descriptor space into people (on one side of the hyperplane) and
non-people (on the other side). Thereafter, when we give the trained SVM a vector of HOG
descriptors for any other window in any image, the SVM can judge whether the window
contains a person or not. The SVM can even give us a confidence value that relates to the
vector's distance from the optimal hyperplane.



Building Custom Object Detectors Chapter 7

[ 175 ]

The SVM model has been around since the early 1960s. However, it has undergone
improvements since then, and the basis of modern SVM implementations can be found in
the paper Support-vector networks (Machine Learning, 1995) by Corinna Cortes and Vladimir
Vapnik. It is available at http://link.springer.com/article/10.1007/BF00994018.

Now that we have a conceptual understanding of the key components we can combine to
make an object detector, we can start looking at a few examples. We will start with one of
OpenCV's ready-made object detectors, and then we will progress to designing and
training our own custom object detectors.

Detecting people with HOG descriptors
OpenCV comes with a class called cv2.HOGDescriptor, which is capable of performing
people detection. The interface has some similarities to the cv2.CascadeClassifier class
that we used in Chapter 5, Detecting and Recognizing Faces. However, unlike
cv2.CascadeClassifier, cv2.HOGDescriptor sometimes returns nested detection
rectangles. In other words, cv2.HOGDescriptor might tell us that it detected one person
whose bounding rectangle is located completely inside another person's bounding
rectangle. This situation really is possible; for example, a child could be standing in front of
an adult, and the child's bounding rectangle could be completely inside the adult's
bounding rectangle. However, in a typical situation, nested detections are probably errors,
so cv2.HOGDescriptor is often used along with code to filter out any nested detections.

Let's begin our sample script by implementing a test to determine whether one rectangle is
nested inside another. For this purpose, we will wire a function, is_inside(i, o), where
i is the possible inner rectangle and o is the possible outer rectangle. The function will
return True if i is inside o; otherwise, it will return False. Here is the start of the script:

import cv2

def is_inside(i, o):
    ix, iy, iw, ih = i
    ox, oy, ow, oh = o
    return ix > ox and ix + iw < ox + ow and \
        iy > oy and iy + ih < oy + oh

Now, we create an instance of cv2.HOGDescriptor, and we specify that it will use a
default people detector that is built into OpenCV by running the following code:

hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())

http://link.springer.com/article/10.1007/BF00994018


Building Custom Object Detectors Chapter 7

[ 176 ]

Note that we specified the people detector with the setSVMDetector method. Hopefully,
this makes sense based on the previous section of this chapter; an SVM is a classifier, so the
choice of SVM determines the type of object our cv2.HOGDescriptor will detect.

Now, we proceed to load an image – in this case, an old photograph of women working in
a hayfield – and we attempt to detect people in the image by running the following code:

img = cv2.imread('../images/haying.jpg')

found_rects, found_weights = hog.detectMultiScale(
    img, winStride=(4, 4), scale=1.02, finalThreshold=1.9)

Note that cv2.HOGDescriptor has a detectMultiScale method, which returns two lists:

A list of bounding rectangles for detected objects (in this case, detected people).1.
A list of weights or confidence scores for detected objects. A higher value2.
indicates greater confidence that the detection result is correct.

detectMultiScale accepts several optional arguments, including the following:

winStride: This tuple defines the x and y distance that the sliding window
moves between successive detection attempts. HOG works well with
overlapping windows, so the stride may be small relative to the window size. A
smaller value produces more detections, at a higher computational cost. The
default stride has no overlap; it is the same as the window size, which is (64,
128) for the default people detector.
scale: This scale factor is applied between successive levels of the image
pyramid. A smaller value produces more detections, at a higher computational
cost. The value must be greater than 1.0. The default is 1.5.
finalThreshold: This value determines how stringent our detection criteria
are. A smaller value is less stringent, resulting in more detections. The default is
2.0.

Now, we can filter the detection results to remove nested rectangles. To determine whether
a rectangle is a nested rectangle, we potentially need to compare it to every other rectangle.
Note the use of our is_inside function in the following nested loop:

found_rects_filtered = []
found_weights_filtered = []
for ri, r in enumerate(found_rects):
    for qi, q in enumerate(found_rects):
        if ri != qi and is_inside(r, q):
            break
    else:



Building Custom Object Detectors Chapter 7

[ 177 ]

        found_rects_filtered.append(r)
        found_weights_filtered.append(found_weights[ri])

Finally, let's draw the remaining rectangles and weights in order to highlight the detected
people, and let's show and save this visualization, as follows:

for ri, r in enumerate(found_rects_filtered):
    x, y, w, h = r
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 2)
    text = '%.2f' % found_weights_filtered[ri]
    cv2.putText(img, text, (x, y - 20),
                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

cv2.imshow('Women in Hayfield Detected', img)
cv2.imwrite('./women_in_hayfield_detected.jpg', img)
cv2.waitKey(0)

If you run the script yourself, you will see rectangles around people in the image. Here is
the result:

The photograph is another example of the work of Sergey Prokudin-
Gorsky (1863-1944), a pioneer of color photography. Here, the scene is a
field at the Leushinskii Monastery, in northwestern Russia, in 1909.



Building Custom Object Detectors Chapter 7

[ 178 ]

Of the six women who are nearest to the camera, five have been successfully detected. At
the same time, a tower in the background has been falsely detected as a person. In many
real-world applications, people-detection results can be improved by analyzing a series of
frames in a video. For example, imagine that we are looking at a surveillance video of the
Leushinskii Monastery's hayfield, instead of a single photograph. We should be able to add
code to determine that the tower cannot be a person because it does not move. Also, we
should be able to detect additional people in other frames and track each person's
movement from frame to frame. We will look at a people-tracking problem in Chapter 8,
Tracking Objects.

Meanwhile, let's proceed to look at another kind of detector that we can train to detect a
given class of objects.

Creating and training an object detector
Using a pre-trained detector makes it easy to build a quick prototype, and we are all very
grateful to the OpenCV developers for making such useful capabilities as face detection and
people detection readily available. However, whether you are a hobbyist or a computer
vision professional, it is unlikely that you will only deal with people and faces.

Moreover, if you are like the authors of this book, you will wonder how the people detector
was created in the first place and whether you can improve it. Furthermore, you may also
wonder whether you can apply the same concepts to detect diverse objects, ranging from
cars to goblins.

Indeed, in industry, you may have to deal with problems of detecting very specific objects,
such as registration plates, book covers, or whatever thing may be most important to your
employer or client.

Thus, the question is, how do we come up with our own classifiers?

There are many popular approaches. Throughout the remainder of this chapter, we will see
that one answer lies in SVMs and the BoW technique.

We have already talked about SVMs and HOG. Let's now take a closer look at BoW.



Building Custom Object Detectors Chapter 7

[ 179 ]

Understanding BoW
BoW is a concept that was not initially intended for computer vision; rather, we use an
evolved version of this concept in the context of computer vision. Let's first talk about its
basic version, which – as you may have guessed – originally belongs to the field of
language analysis and information retrieval.

Sometimes, in the context of computer vision, BoW is called bag of visual
words (BoVW). However, we will simply use the term BoW, since this is
the term used by OpenCV.

BoW is the technique by which we assign a weight or count to each word in a series of
documents; we then represent these documents with vectors of these counts. Let's look at
an example, as follows:

Document 1: I like OpenCV and I like Python.
Document 2: I like C++ and Python.
Document 3: I don't like artichokes.

These three documents allow us to build a dictionary – also called a codebook or
vocabulary – with these values, as follows:

{
    I: 4,
    like: 4,
    OpenCV: 1,
    and: 2,
    Python: 2,
    C++: 1,
    don't: 1,
    artichokes: 1
}

We have eight entries. Let's now represent the original documents using eight-entry
vectors. Each vector contains values representing the counts of all words in the dictionary,
in order, for a given document. The vector representation of the preceding three sentences
is as follows:

[2, 2, 1, 1, 1, 0, 0, 0]
[1, 1, 0, 1, 1, 1, 0, 0]
[1, 1, 0, 0, 0, 0, 1, 1]



Building Custom Object Detectors Chapter 7

[ 180 ]

These vectors can be conceptualized as a histogram representation of documents or as a
descriptor vector that can be used to train classifiers. For example, a document can be
classified as spam or not spam based on such a representation. Indeed, spam filtering is one
of the many real-world applications of BoW.

Now that we have a grasp of the basic concept of BoW, let's see how this applies to the
world of computer vision.

Applying BoW to computer vision
We are by now familiar with the concepts of features and descriptors. We have used
algorithms such as SIFT and SURF to extract descriptors from an image's features so that
we can match these features in another image.

We have also recently familiarized ourselves with another kind of descriptor, based on a
codebook or dictionary. We know about an SVM, a model that can accept labeled
descriptor vectors as training data, can find an optimal division of the descriptor space into
the given classes, and can predict the classes of new data.

Armed with this knowledge, we can take the following approach to build a classifier:

Take a sample dataset of images.1.
For each image in the dataset, extract descriptors (with SIFT, SURF, ORB, or a2.
similar algorithm).
Add each descriptor vector to the BoW trainer.3.
Cluster the descriptors into k clusters whose centers (centroids) are our visual4.
words. This last point probably sounds a bit obscure, but we will explore it
further in the next section.

At the end of this process, we have a dictionary of visual words ready to be used. As you
can imagine, a large dataset will help make our dictionary richer in visual words. Up to a
point, the more words, the better!

Having trained a classifier, we should proceed to test it. The good news is that the test
process is conceptually very similar to the training process outlined previously. Given a test
image, we can extract descriptors and quantize them (or reduce their dimensionality) by
calculating a histogram of their distances to the centroids. Based on this, we can attempt to
recognize visual words, and locate them in the image.



Building Custom Object Detectors Chapter 7

[ 181 ]

This is the point in the chapter where you have built up an appetite for a deeper practical
example, and are raring to code. However, before proceeding, let's take a quick but 
necessary digression into the theory of k-means clustering so that you can fully understand
how visual words are created. Thereby, you will gain a better understanding of the process
of object detection using BoW and SVMs.

k-means clustering
k-means clustering is a method of quantization whereby we analyze a large number of
vectors in order to find a small number of clusters. Given a dataset, k represents the number
of clusters into which the dataset is going to be divided. The term means refers to the
mathematical concept of the mean or the average; when visually represented, the mean of a
cluster is its centroid or the geometric center of points in the cluster.

Clustering refers to the process of grouping points in a dataset into
clusters.

OpenCV provides a class called cv2.BOWKMeansTrainer, which we will use to help train
our classifier. As you might expect, the OpenCV documentation gives the following
summary of this class:

A "kmeans-based class to train a visual vocabulary using the bag of words approach."

After this long theoretical introduction, we can look at an example, and start training our
custom classifier.

Detecting cars
To train any kind of classifier, we must begin by creating or acquiring a training dataset.
We are going to train a car detector, so our dataset must contain positive samples that
represent cars, as well as negative samples that represent other (non-car) things that the
detector is likely to encounter while looking for cars. For example, if the detector is
intended to search for cars on a street, then a picture of a curb, a crosswalk, a pedestrian, or
a bicycle might be a more representative negative sample than a picture of the rings of
Saturn. Besides representing the expected subject matter, ideally, the training samples
should represent the way our particular camera and algorithm will see the subject matter.



Building Custom Object Detectors Chapter 7

[ 182 ]

Ultimately, in this chapter, we intend to use a sliding window of fixed size, so it is
important that our training samples conform to a fixed size, and that the positive samples
are tightly cropped in order to frame a car without much background.

Up to a point, we expect that the classifier's accuracy will improve as we keep adding good
training images. On the other hand, a large dataset can make the training slow, and it is
possible to overtrain a classifier such that it fails to extrapolate beyond the training set.
Later in this section, we will write our code in a way that allows us to easily modify the
number of training images so that we find a good size experimentally.

Assembling a dataset of car images would be a time-consuming task if we were to do it all
by ourselves (though it is entirely doable). To avoid reinventing the wheel – or the whole
car – we can avail ourselves of ready-made datasets, such as the following:

UIUC Image Database for Car Detection: https://cogcomp.seas.upenn.edu/
Data/Car/

Stanford Cars Dataset:
http://ai.stanford.edu/~jkrause/cars/car_dataset.html

Let's use the UIUC dataset in our example. Several steps are involved in obtaining this
dataset and using it in a script, so let's walk through them one by one, as follows:

Download the UIUC dataset from http://l2r.cs.uiuc.edu/~cogcomp/Data/1.
Car/CarData.tar.gz. Unzip it to some folder, which we will refer to as
<project_path>. Now, the unzipped data should be located at
<project_path>/CarData. Specifically, we will use some of the images in
<project_path>/CarData/TrainImages and
<project_path>/CarData/TestImages.
Also in <project_path>, let's create a Python script called2.
detect_car_bow_svm.py. To begin the script's implementation, write the
following code to check whether the CarData subfolder exists:

import cv2
import numpy as np
import os

if not os.path.isdir('CarData'):
    print(
        'CarData folder not found. Please download and unzip '
        'http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz '
        'into the same folder as this script.')
    exit(1)

https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
https://cogcomp.seas.upenn.edu/Data/Car/
http://ai.stanford.edu/~jkrause/cars/car_dataset.html
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car/CarData.tar.gz


Building Custom Object Detectors Chapter 7

[ 183 ]

If you can run this script and it does not print anything, this means everything is
in its correct place.

Next, let's define the following constants in the script:3.

BOW_NUM_TRAINING_SAMPLES_PER_CLASS = 10
SVM_NUM_TRAINING_SAMPLES_PER_CLASS = 100

Note that our classifier will make use of two training stages: one stage for the
BoW vocabulary, which will use a number of images as samples, and another
stage for the SVM, which will use a number of BoW descriptor vectors as samples.
Arbitrarily, we have defined a different number of training samples for each
stage. At each stage, we could have also defined a different number of training
samples for the two classes (car and not car), but instead, we will use the same
number.

We will use cv2.SIFT to extract descriptors and cv2.FlannBasedMatcher to4.
match these descriptors. Let's initialize these algorithms with the following code:

sift = cv2.xfeatures2d.SIFT_create()

FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = {}
flann = cv2.FlannBasedMatcher(index_params, search_params)

Note that we have initialized SIFT and the Fast Library for Appropriate Nearest
Neighbors (FLANN) in the same way as we did in Chapter 6, Retrieving Images
and Searching Using image Descriptors. However, this time, descriptor matching is
not our end goal; instead, it will be part of the functionality of our BoW.

OpenCV provides a class called cv2.BOWKMeansTrainer to train a BoW5.
vocabulary, and a class called cv2.BOWImgDescriptorExtractor to convert
some kind of lower-level descriptors – in our example, SIFT descriptors – into
BoW descriptors. Let's initialize these objects with the following code:

bow_kmeans_trainer = cv2.BOWKMeansTrainer(40)
bow_extractor = cv2.BOWImgDescriptorExtractor(sift, flann)



Building Custom Object Detectors Chapter 7

[ 184 ]

When initializing cv2.BOWKMeansTrainer, we must specify the number of
clusters – in our example, 40. When initializing
cv2.BOWImgDescriptorExtractor, we must specify a descriptor extractor and
a descriptor matcher – in our example, the cv2.SIFT and
cv2.FlannBasedMatcher objects that we created earlier.

To train the BoW vocabulary, we will provide samples of SIFT descriptors for6.
various car and not car images. We will load the images from the
CarData/TrainImages subfolder, which contains positive (car) images with
names such as pos-x.pgm, and negative (not car) images with names such as
neg-x.pgm, where x is a number starting at 1. Let's write the following utility
function to return a pair of paths to the ith positive and negative training
images, where i is a number starting at 0:

def get_pos_and_neg_paths(i):
    pos_path = 'CarData/TrainImages/pos-%d.pgm' % (i+1)
    neg_path = 'CarData/TrainImages/neg-%d.pgm' % (i+1)
    return pos_path, neg_path

Later in this section, we will call the preceding function in a loop, with a varying
value of i, when we need to acquire a number of training samples.

For each path to a training sample, we will need to load the image, extract SIFT7.
descriptors, and add the descriptors to the BoW vocabulary trainer. Let's write
another utility function to do precisely this, as follows:

def add_sample(path):
    img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
    keypoints, descriptors = sift.detectAndCompute(img, None)
    if descriptors is not None:
        bow_kmeans_trainer.add(descriptors)

If no features are found in the image, then the keypoints and
descriptors variables will be None.



Building Custom Object Detectors Chapter 7

[ 185 ]

At this stage, we have everything we need to start training the BoW vocabulary.8.
Let's read a number of images for each class (car as the positive class and not car
as the negative class) and add them to the training set, as follows:

for i in range(BOW_NUM_TRAINING_SAMPLES_PER_CLASS):
    pos_path, neg_path = get_pos_and_neg_paths(i)
    add_sample(pos_path)
    add_sample(neg_path)

Now that we have assembled the training set, we will call the vocabulary9.
trainer's cluster method, which performs the k-means classification and returns
the vocabulary. We will assign this vocabulary to the BoW descriptor extractor,
as follows:

voc = bow_kmeans_trainer.cluster()
bow_extractor.setVocabulary(voc)

Remember that earlier, we initialized the BoW descriptor extractor with a SIFT
descriptor extractor and FLANN matcher. Now, we have also given the BoW
descriptor extractor a vocabulary that we trained with samples of SIFT
descriptors. At this stage, our BoW descriptor extractor has everything it needs in
order to extract BoW descriptors from Difference of Gaussian (DoG) features.

Remember that cv2.SIFT detects DoG features and extracts SIFT
descriptors, as we discussed in Chapter 6, Retrieving Images and Searching
Using Image Descriptors, specifically in the Detecting DoG features and
extracting SIFT descriptors section.

Next, we will declare another utility function that takes an image and returns the10.
descriptor vector, as computed by the BoW descriptor extractor. This involves
extracting the image's DoG features, and computing the BoW descriptor vector
based on the DoG features, as follows:

def extract_bow_descriptors(img):
    features = sift.detect(img)
    return bow_extractor.compute(img, features)



Building Custom Object Detectors Chapter 7

[ 186 ]

We are ready to assemble another kind of training set, containing samples of11.
BoW descriptors. Let's create two arrays to accommodate the training data and
labels, and populate them with the descriptors generated by our BoW descriptor
extractor. We will label each descriptor vector with 1 for a positive sample and -1
for a negative sample, as shown in the following code block:

training_data = []
training_labels = []
for i in range(SVM_NUM_TRAINING_SAMPLES_PER_CLASS):
    pos_path, neg_path = get_pos_and_neg_paths(i)
    pos_img = cv2.imread(pos_path, cv2.IMREAD_GRAYSCALE)
    pos_descriptors = extract_bow_descriptors(pos_img)
    if pos_descriptors is not None:
        training_data.extend(pos_descriptors)
        training_labels.append(1)
    neg_img = cv2.imread(neg_path, cv2.IMREAD_GRAYSCALE)
    neg_descriptors = extract_bow_descriptors(neg_img)
    if neg_descriptors is not None:
        training_data.extend(neg_descriptors)
        training_labels.append(-1)

Should you wish to train a classifier to distinguish between multiple
positive classes, you can simply add other descriptors with other labels.
For example, we could train a classifier that uses the label 1 for car, 2 for
person, and -1 for background. There is no requirement to have a negative
or background class but, if you do not, your classifier will assume that
everything belongs to one of the positive classes.

OpenCV provides a class called cv2.ml_SVM, representing an SVM. Let's create12.
an SVM, and train it with the data and labels that we previously assembled, as
follows:

svm = cv2.ml.SVM_create()
svm.train(np.array(training_data), cv2.ml.ROW_SAMPLE,
          np.array(training_labels))

Note that we must convert the training data and labels from lists to
NumPy arrays before we pass them to the train method of cv2.ml_SVM.



Building Custom Object Detectors Chapter 7

[ 187 ]

Finally, we are ready to test the SVM by classifying some images that were not13.
part of the training set. We will iterate over a list of paths to test images. For each
path, we will load the image, extract BoW descriptors, and get the SVM's
prediction or classification result, which will be either 1.0 (car) or -1.0 (not car),
based on the training labels we used earlier. We will draw text on the image to 
show the classification result, and we will show the image in a window. After
showing all the images, we will wait for the user to hit any key, and then the
script will end. All of this is achieved in the following block of code:

for test_img_path in ['CarData/TestImages/test-0.pgm',
                      'CarData/TestImages/test-1.pgm',
                      '../images/car.jpg',
                      '../images/haying.jpg',
                      '../images/statue.jpg',
                      '../images/woodcutters.jpg']:
    img = cv2.imread(test_img_path)
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    descriptors = extract_bow_descriptors(gray_img)
    prediction = svm.predict(descriptors)
    if prediction[1][0][0] == 1.0:
        text = 'car'
        color = (0, 255, 0)
    else:
        text = 'not car'
        color = (0, 0, 255)
    cv2.putText(img, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1,
                color, 2, cv2.LINE_AA)
    cv2.imshow(test_img_path, img)
cv2.waitKey(0)

Save and run the script. You should see six windows with various classification results.
Here is a screenshot of one of the true positive results:



Building Custom Object Detectors Chapter 7

[ 188 ]

The next screenshot shows one of the true negative results:



Building Custom Object Detectors Chapter 7

[ 189 ]

Of the six images in our simple test, only the following one is incorrectly classified:

Try adjusting the number of training samples, and try testing the classifier on more images,
to see what results you can get.

Let's take stock of what we have done so far. We have used a mixture of SIFT, BoW, and
SVMs to train a classifier to distinguish between two classes: car and not car. We have
applied this classifier to whole images. The next logical step is to apply a sliding window
technique so that we can narrow down our classification results to specific regions of an
image.



Building Custom Object Detectors Chapter 7

[ 190 ]

Combining an SVM with a sliding window
By combining our SVM classifier with a sliding window technique and an image pyramid,
we can achieve the following improvements:

Detect multiple objects of the same kind in an image.
Determine the position and size of each detected object in an image.

We will adopt the following approach:

Take a region of the image, classify it, and then move this window to the right by1.
a predefined step size. When we reach the rightmost end of the image, reset the x
coordinate to 0, move down a step, and repeat the entire process.
At each step, perform a classification with the SVM that was trained with BoW.2.
Keep track of all the windows that are positive detections, according to the SVM.3.
After classifying every window in the entire image, scale the image down, and4.
repeat the entire process of using a sliding window. Thus, we are using an image
pyramid. Continue rescaling and classifying until we get to a minimum size.

When we reach the end of this process, we have collected important information about the
content of the image. However, there is a problem: in all likelihood, we have found a
number of overlapping blocks that each yield a positive detection with high confidence.
That is to say, the image may contain one object that gets detected multiple times. If we
reported these multiple detections, our report would be quite misleading, so we will filter
our results using NMS.

For a refresher, you may wish to refer back to the Understanding NMS
section, earlier in this chapter.

Next, let's look at how to modify and extend our previous script, in order to implement the
approach we have just described.



Building Custom Object Detectors Chapter 7

[ 191 ]

Detecting a car in a scene
We are now ready to apply all the concepts we learned so far by creating a car detection
script that scans an image and draws rectangles around cars. Let's create a new Python
script, detect_car_bow_svm_sliding_window.py, by copying our previous script,
detect_car_bow_svm.py. (We covered the implementation of detect_car_bow_svm.py
earlier, in the Detecting cars section.) Much of the new script's implementation will remain
unchanged because we still want to train a BoW descriptor extractor and an SVM in almost
the same way as we did previously. However, after the training is complete, we will
process the test images in a new way. Rather than classifying each image in its entirety, we
will decompose each image into pyramid layers and windows, we will classify each
window, and we will apply NMS to a list of windows that yielded positive detections.

For NMS, we will rely on Malisiewicz and Rosebrock's implementation, as described earlier
in this chapter, in the Understanding NMS section. You can find a slightly modified copy of
their implementation in this book's GitHub repository, specifically in the Python script at
chapter7/non_max_suppression.py. This script provides a function with the following
signature:

def non_max_suppression_fast(boxes, overlapThresh):

As its first argument, the function takes a NumPy array containing rectangle coordinates
and scores. If we have N rectangles, the shape of this array is Nx5. For a given rectangle at
index i, the values in the array have the following meanings:

boxes[i][0] is the leftmost x coordinate.
boxes[i][1] is the topmost y coordinate.
boxes[i][2] is the rightmost x coordinate.
boxes[i][3] is the bottommost y coordinate.
boxes[i][4] is the score, where a higher score represents greater confidence
that the rectangle is a correct detection result.

As its second argument, the function takes a threshold that represents the maximum
proportion of overlap between rectangles. If two rectangles have a greater proportion of
overlap than this, the one with the lower score will be filtered out. Ultimately, the function
will return an array of the remaining rectangles.



Building Custom Object Detectors Chapter 7

[ 192 ]

Now, let's turn our attention to the modifications to the
detect_car_bow_svm_sliding_window.py script, as follows:

First, we want to add a new import statement for the NMS function, as shown in1.
bold in the following code:

import cv2
import numpy as np
import os

from non_max_suppression import non_max_suppression_fast as nms

Let's define some additional parameters near the start of the script, as shown in2.
bold here:

BOW_NUM_TRAINING_SAMPLES_PER_CLASS = 10
SVM_NUM_TRAINING_SAMPLES_PER_CLASS = 100

SVM_SCORE_THRESHOLD = 1.8
NMS_OVERLAP_THRESHOLD = 0.15

We will use SVM_SCORE_THRESHOLD as a threshold to distinguish between a
positive window and a negative window. We will see how the score is obtained a
little later in this section. We will use NMS_OVERLAP_THRESHOLD as the maximum
acceptable proportion of overlap in the NMS step. Here, we have arbitrarily
chosen 15%, so we will cull windows that overlap by more than this proportion.
As you experiment with your SVMs, you may tweak these parameters to your
liking until you find values that yield the best results in your application.

We will reduce the number of k-means clusters from 40 to 12 (a number chosen3.
arbitrarily based on experimentation), as follows:

bow_kmeans_trainer = cv2.BOWKMeansTrainer(12)

We will also adjust the parameters of the SVM, as follows:4.

svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setC(50)
svm.train(np.array(training_data), cv2.ml.ROW_SAMPLE,
          np.array(training_labels))



Building Custom Object Detectors Chapter 7

[ 193 ]

With the preceding changes to the SVM, we are specifying the classifier's level of
strictness or severity. As the value of the C parameter increases, the risk of false
positives decreases but the risk of false negatives increases. In our application, a
false positive would be a window detected as a car when it is really not a car, and
a false negative would be a car detected as a window when it really is a car.

After the code that trains the SVM, we want to add two more helper functions. One of them
will generate levels of the image pyramid, and the other will generate regions of interest,
based on the sliding window technique. Besides adding these helper functions, we also
need to handle the test images differently in order to make use of the sliding window and
NMS. The following steps cover the changes:

First, let's look at the helper function that deals with the image pyramid. This1.
function is shown in the following code block:

def pyramid(img, scale_factor=1.25, min_size=(200, 80),
            max_size=(600, 600)):
    h, w = img.shape
    min_w, min_h = min_size
    max_w, max_h = max_size
    while w >= min_w and h >= min_h:
        if w <= max_w and h <= max_h:
            yield img
        w /= scale_factor
        h /= scale_factor
        img = cv2.resize(img, (int(w), int(h)),
                         interpolation=cv2.INTER_AREA)

The preceding function takes an image and generates a series of resized versions
of it. The series is bounded by a maximum and minimum image size.

You will have noticed that the resized image is not returned with the
return keyword but with the yield keyword. This is because this
function is a so-called generator. It produces a series of images that we can
easily use in a loop. If you are not familiar with generators, take a look at
the official Python Wiki at https://wiki.python.org/moin/Generators.

https://wiki.python.org/moin/Generators


Building Custom Object Detectors Chapter 7

[ 194 ]

Next up is the function to generate regions of interest, based on the sliding2.
window technique. This function is shown in the following code block:

def sliding_window(img, step=20, window_size=(100, 40)):
    img_h, img_w = img.shape
    window_w, window_h = window_size
    for y in range(0, img_w, step):
        for x in range(0, img_h, step):
            roi = img[y:y+window_h, x:x+window_w]
            roi_h, roi_w = roi.shape
            if roi_w == window_w and roi_h == window_h:
                yield (x, y, roi)

Again, this is a generator. Although it is a bit deep-nested, the mechanism is very
simple: given an image, return the upper-left coordinates and the sub-image
representing the next window. Successive windows are shifted by an arbitrarily
sized step from left to right until we reach the end of a row, and from the top to
bottom until we reach the end of the image.

Now, let's consider the treatment of test images. As in the previous version of the3.
script, we loop through a list of paths to test images, in order to load and process
each one. The beginning of the loop is unchanged. For context, here it is:

for test_img_path in ['CarData/TestImages/test-0.pgm',
                      'CarData/TestImages/test-1.pgm',
                      '../images/car.jpg',
                      '../images/haying.jpg',
                      '../images/statue.jpg',
                      '../images/woodcutters.jpg']:
    img = cv2.imread(test_img_path)
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

For each test image, we iterate over the pyramid levels, and for each pyramid4.
level, we iterate over the sliding window positions. For each window or region
of interest (ROI), we extract BoW descriptors and classify them using the SVM.
If the classification produces a positive result that passes a certain confidence
threshold, we add the rectangle's corner coordinates and confidence score to a list
of positive detections. Continuing from the previous code block, we proceed to
handle a given test image with the following code:

    pos_rects = []
    for resized in pyramid(gray_img):
        for x, y, roi in sliding_window(resized):
            descriptors = extract_bow_descriptors(roi)
            if descriptors is None:
                continue



Building Custom Object Detectors Chapter 7

[ 195 ]

            prediction = svm.predict(descriptors)
            if prediction[1][0][0] == 1.0:
                raw_prediction = svm.predict(
                    descriptors,
                    flags=cv2.ml.STAT_MODEL_RAW_OUTPUT)
                score = -raw_prediction[1][0][0]
                if score > SVM_SCORE_THRESHOLD:
                    h, w = roi.shape
                    scale = gray_img.shape[0] / \
                        float(resized.shape[0])
                    pos_rects.append([int(x * scale),
                                      int(y * scale),
                                      int((x+w) * scale),
                                      int((y+h) * scale),
                                      score])

Let's take note of a couple of complexities in the preceding code, as follows:

To obtain a confidence score for the SVM's prediction, we must run
the predict method with an optional flag,
cv2.ml.STAT_MODEL_RAW_OUTPUT. Then, instead of returning a
label, the method returns a score as part of its output. This score
may be negative, and a low value represents a high level of
confidence. To make the score more intuitive – and to match the
NMS function's assumption that a higher score is better – we
negate the score so that a high value represents a high level of
confidence.
Since we are working with multiple pyramid levels, the window
coordinates do not have a common scale. We have converted them
back to a common scale – the original image's scale – before adding
them to our list of positive detections.

So far, we have performed car detection at various scales and positions; as a
result, we have a list of detected car rectangles, including coordinates and scores.
We expect a lot of overlap within this list of rectangles.



Building Custom Object Detectors Chapter 7

[ 196 ]

Now, let's call the NMS function, in order to cherry-pick the highest-scoring5.
rectangles in the case of overlap, as follows:

    pos_rects = nms(np.array(pos_rects), NMS_OVERLAP_THRESHOLD)

Note that we have converted our list of rectangle coordinates and scores
to a NumPy array, which is the format expected by this function.

At this stage, we have an array of detected car rectangles and their scores, and we
have ensured that these are the best non-overlapping detections we can select
(within the parameters of our model).

Now, let's draw the rectangles and their scores by adding the following inner6.
loop to the code:

    for x0, y0, x1, y1, score in pos_rects:
        cv2.rectangle(img, (int(x0), int(y0)), (int(x1), int(y1)),
                      (0, 255, 255), 2)
        text = '%.2f' % score
        cv2.putText(img, text, (int(x0), int(y0) - 20),
                    cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

As in the previous version of this script, the body of the outer loop ends by showing the
current test image, including the annotations we have drawn on it. After the loop runs
through all the test images, we wait for the user to press any key; then, the program ends,
as shown here:

    cv2.imshow(test_img_path, img)
cv2.waitKey(0)

Let's run the modified script, and see how well it can answer the eternal question: Dude,
where's my car?



Building Custom Object Detectors Chapter 7

[ 197 ]

The following screenshot shows a successful detection:

Another of our test images has two cars in it. As it happens, one car is successfully detected
while the other is not, as shown in the following screenshot:



Building Custom Object Detectors Chapter 7

[ 198 ]

Sometimes, a background region with many features in it is falsely detected as a car. Here is
an example:



Building Custom Object Detectors Chapter 7

[ 199 ]

Remember that in this sample script, our training sets are small. Larger
training sets, with more diverse backgrounds, could improve the results.
Also, remember that the image pyramid and sliding window are
producing a large number of ROIs. When we consider this, we should
realize that our detector's false positive rate is actually quite low. If we
were performing detection on frames of a video, we could further lower
the false positive rate by filtering out detections that occur only in a single
frame or a few frames, rather than a series of some arbitrary minimum
length.

Feel free to experiment with the parameters and training sets of the preceding script. When
you are ready, let's wrap up this chapter with a few closing notes.

Saving and loading a trained SVM
A final piece of advice on SVMs: you do not need to train a detector every time you want to
use it – and, indeed, you should avoid doing so because training is slow. You can use code
such as the following to save a trained SVM model to an XML file:

svm = cv2.ml.SVM_create()
svm.train(np.array(training_data), cv2.ml.ROW_SAMPLE,
          np.array(training_labels))
svm.save('my_svm.xml')

Subsequently, you can reload the trained SVM, using code such as the following:

svm = cv2.ml.SVM_create()
svm.load('my_svm.xml')

Typically, you might have one script that trains and saves your SVM model, and other
scripts that load and use it for various detection problems.



Building Custom Object Detectors Chapter 7

[ 200 ]

Summary
In this chapter, we covered a wide range of concepts and techniques, including HOG, BoW,
SVMs, image pyramids, sliding windows, and NMS. We learned that these techniques have
applications in object detection, as well as other fields. We wrote a script that combined
most of these techniques – BoW, SVMs, an image pyramid, a sliding window, and NMS –
and we gained practical experience in machine learning through the exercise of training
and testing a custom detector. Finally, we demonstrated that we can detect cars!

Our new knowledge forms the foundation of the next chapter, in which we will utilize
object detection and classification techniques on sequences of frames in videos. We will
learn how to track objects and retain information about them – an important objective in
many real-world applications.



8
Tracking Objects

In this chapter, we will explore a selection of techniques from the vast topic of object
tracking, which is the process of locating a moving object in a movie or a video feed from a
camera. Real-time object tracking is a critical task in many computer vision applications
such as surveillance, perceptual user interfaces, augmented reality, object-based video
compression, and driver assistance.

Tracking objects can be accomplished in several ways, with the most optimal technique
being largely dependent on the task at hand. We will take the following route in our study
of this topic:

Detect moving objects based on differences between the current frame and a
frame that represents the background. First, we will try a simple implementation
of this approach. Then, we will use OpenCV's implementations of more
advanced algorithms, namely, the Mixture of Gaussians (MOG) and k-nearest
neighbors (KNN) background subtractors. We will also consider how to modify
our scripts to use any other background subtractor that OpenCV supports, such
as the Godbehere-Matsukawa-Goldberg (GMG) background subtractor.
Track a moving object based on a color histogram of the object. This approach
involves histogram back-projection, which is the process of computing the
similarity between various image regions and a histogram. In other words, the
histogram serves as a template of how we expect the object to look. We will use
tracking algorithms called MeanShift and CamShift, which operate on the result
of the histogram back-projection.
Use a Kalman filter to find a trend in an object's motion and to predict where the
object is going next.
Review the manner in which OpenCV favors object-oriented programming
(OOP) paradigms, and consider how this differs from functional programming
(FP) paradigms.
Implement a pedestrian tracker that combines KNN background subtraction,
MeanShift, and Kalman filtering.



Tracking Objects Chapter 8

[ 202 ]

If you have been reading this book sequentially, then, by the end of this chapter, you will
know a lot of ways to describe, detect, classify, and track objects in 2D. At that point, you
should be ready to pursue 3D tracking in Chapter 9, Camera Models and Augmented Reality.

Technical requirements
This chapter uses Python, OpenCV, and NumPy. Please refer to Chapter 1, Setting Up
OpenCV, for installation instructions.

The complete code and sample videos for this chapter can be found in this book's GitHub
repository, https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-
with-Python-Third-Edition, in the chapter08 folder.

Detecting moving objects with background
subtraction
To track anything in a video, first, we must identify the regions of a video frame that
correspond to moving objects. Many motion detection techniques are based on the simple
concept of background subtraction. For example, suppose that we have a stationary
camera viewing a scene that is also mostly stationary. In addition to this, suppose that the
camera's exposure and the lighting conditions in the scene are stable so that frames do not
vary much in terms of brightness. Under these conditions, we can easily capture a reference
image that represents the background or, in other words, the stationary components of the
scene. Then, any time the camera captures a new frame, we can subtract the frame from the
reference image, and take the absolute value of this difference in order to obtain a
measurement of motion at each pixel location in the frame. If any region of the frame is
very different from the reference image, we conclude that the given region is a moving
object.

Background subtraction techniques, in general, have the following limitations:

Any camera motion, change in exposure, or change in lighting conditions can
cause a change in pixel values throughout the entire scene all at once; therefore,
the entire background model (or reference image) becomes outdated.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Tracking Objects Chapter 8

[ 203 ]

A piece of the background model can become outdated if an object enters the
scene and then just stays there for a long period of time. For example, suppose
our scene is a hallway. Someone enters the hallway, puts a poster on the wall,
and leaves the poster there. For all practical purposes, the poster is now just
another part of the stationary background; however, it was not part of our
reference image, so our background model has become partly outdated.

These problems point to a need to dynamically update the background model based on a
series of new frames. Advanced background subtraction techniques attempt to address this
need in a variety of ways.

Another general limitation is that shadows and solid objects can affect a background
subtractor in similar ways. For instance, we might get an inaccurate picture of a moving
object's size and shape because we cannot differentiate the object from its shadow.
However, advanced background subtraction techniques do attempt to distinguish between
shadow regions and solid objects using various means.

Background subtractors generally have yet another limitation: they do not offer fine-
grained control over the kind of motion that they detect. For example, if a scene shows a
subway car that is continuously shaking as it travels on its track, this repetitive motion will
affect the background subtractor. For practical purposes, we might consider the subway
car's vibrations to be normal variations in a semi-stationary background. We might even
know the frequency of these vibrations. However, a background subtractor does not embed
any information about frequencies of motion, so it does not offer a convenient or precise
way in which to filter out such predictable motions. To compensate for such shortcomings,
we can apply preprocessing steps such as blurring the reference image and also blurring
each new frame; in this way, certain frequencies are suppressed, albeit in a manner that is
not very intuitive, efficient, or precise.

Analyzing the frequencies of motion is beyond the scope of this book.
However, for an introduction to this topic in a computer vision context,
see Joseph Howse's book, OpenCV 4 for Secret Agents (Packt Publishing,
2019), specifically Chapter 7, Seeing a Heartbeat with a Motion-Amplifying
Camera.

Now that we have taken an overview of background subtraction and understood some of
the obstacles that it faces, let's investigate how several implementations of it fare in action.
We will start with a simple but not robust implementation that we can handcraft in a few
lines of code, and then progress to more sophisticated alternatives that OpenCV provides
for us.



Tracking Objects Chapter 8

[ 204 ]

Implementing a basic background subtractor
To implement a basic background subtractor, let's take the following approach:

Start capturing frames from a camera.1.
Discard nine frames so that the camera has time to properly adjust its2.
autoexposure to suit the lighting conditions in the scene.
Take the 10th frame, convert it to grayscale, blur it, and use this blurred image as3.
the reference image of the background.
For each subsequent frame, blur the frame, convert it to grayscale, and compute4.
the absolute difference between this blurred frame and the reference image of the
background. Perform thresholding, smoothing, and contour detection on the
differenced image. Draw and show the bounding boxes of the major contours.

The use of a Gaussian blur should make our background subtractor less
susceptible to small vibrations, as well as digital noise. The morphological
operations also offer these benefits.

To blur images, we will use the Gaussian blur algorithm, which we originally discussed in
Chapter 3, Processing Images with OpenCV, specifically in the HPFs and LPFs section. To
smoothen thresholded images, we will use morphological erosion and dilation, which we
originally discussed in Chapter 4, Depth Estimation and Segmentation, specifically in the
Image segmentation with the Watershed algorithm section. Contour detection and bounding
boxes are also among the topics we introduced in Chapter 3, Processing Images with
OpenCV, specifically in the Contour detection section.

Expanding the preceding list into smaller steps, we can consider our script's
implementation in eight sequential blocks of code:

Let's begin by importing OpenCV and defining the size of our kernels for the1.
blur, erode, and dilate operations:

import cv2

BLUR_RADIUS = 21
erode_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
dilate_kernel = cv2.getStructuringElement(
    cv2.MORPH_ELLIPSE, (9, 9))



Tracking Objects Chapter 8

[ 205 ]

Now, let's try to capture 10 frames from a camera:2.

cap = cv2.VideoCapture(0)

# Capture several frames to allow the camera's autoexposure to
adjust.
for i in range(10):
    success, frame = cap.read()
if not success:
    exit(1)

If we were unable to capture 10 frames, we exit. Otherwise, we proceed to3.
convert the 10th frame to grayscale and blur it:

gray_background = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray_background = cv2.GaussianBlur(gray_background,
                                   (BLUR_RADIUS, BLUR_RADIUS), 0)

At this stage, we have our reference image of the background. Now, let's proceed4.
to capture more frames, in which we may detect motion. Our processing of each
frame begins with grayscale conversion and a Gaussian blur operation:

success, frame = cap.read()
while success:

    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray_frame = cv2.GaussianBlur(gray_frame,
                                  (BLUR_RADIUS, BLUR_RADIUS), 0)

Now, we can compare the blurred, grayscale version of the current frame to the5.
blurred, grayscale version of the background image. Specifically, we will use
OpenCV's cv2.absdiff function to find the absolute value (or the magnitude)
of the difference between these two images. Then, we will apply a threshold to
obtain a pure black-and-white image, and morphological operations to smoothen
the thresholded image. Here is the relevant code:

diff = cv2.absdiff(gray_background, gray_frame)
_, thresh = cv2.threshold(diff, 40, 255, cv2.THRESH_BINARY)
cv2.erode(thresh, erode_kernel, thresh, iterations=2)
cv2.dilate(thresh, dilate_kernel, thresh, iterations=2)



Tracking Objects Chapter 8

[ 206 ]

At this point, if our technique has worked well, our thresholded image should6.
contain white blobs wherever there is a moving object. Now, we want to find the
contours of the white blobs and draw bounding boxes around them. As a further
means of filtering out small changes that are probably not real objects, we will
apply a threshold based on the area of the contour. If the contour is too small, we
conclude that it is not a real moving object. (Of course, the definition of too
small may vary depending on your camera's resolution and your application; in
some circumstances, you might not wish to apply this test at all.) Here is the code
to detect contours and draw bounding boxes:

_, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                                     cv2.CHAIN_APPROX_SIMPLE)

for c in contours:
    if cv2.contourArea(c) > 4000:
        x, y, w, h = cv2.boundingRect(c)
        cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 0), 2)

Now, let's show the differenced image, the thresholded image, and the detection7.
result with the bounding rectangles:

cv2.imshow('diff', diff)
cv2.imshow('thresh', thresh)
cv2.imshow('detection', frame)

We will continue reading frames until the user presses the Esc key to quit:8.

k = cv2.waitKey(1)
if k == 27: # Escape
    break

success, frame = cap.read()

There you have it: a basic motion detector that draws rectangles around moving objects.
The final result is something like this:



Tracking Objects Chapter 8

[ 207 ]

To obtain good results with this script, make sure that you (and other
moving objects) do not enter the camera's field of view until after the
background image has been initialized.

For such a simple technique, this result is quite promising. However, our script makes no
effort to update the background image dynamically, so it will quickly become outdated if
the camera moves or the lighting changes. Thus, we should move on to more flexible and
intelligent background subtractors. Fortunately, OpenCV provides several ready-made
background subtractors for us to use. We will start with the one that implements the MOG
algorithm.

Using a MOG background subtractor
OpenCV provides a class called cv2.BackgroundSubtractor, which has various
subclasses that implement various background subtraction algorithms.



Tracking Objects Chapter 8

[ 208 ]

You may recall that we previously used OpenCV's implementation of the GrabCut
algorithm to perform foreground/background segmentation in Chapter 4, Depth Estimation
and Segmentation, specifically in the Foreground detection with the GrabCut algorithm section.
Like cv2.grabCut, the various subclass implementations of
cv2.BackgroundSubtractor can produce a mask that assigns different values to different
segments of the image. Specifically, a background subtractor can mark foreground
segments as white (that is, an 8-bit grayscale value of 255), background segments as black
(0), and (in some implementations) shadow segments as gray (127). Moreover, unlike
GrabCut, the background subtractors update the foreground/background model over time,
typically by applying machine learning to a series of frames. Many of the background
subtractors are named after the statistical clustering technique on which they base their
approach to machine learning. So, we will begin by looking at a background subtractor
based on the MOG clustering technique.

OpenCV has two implementations of a MOG background subtractor. Perhaps not
surprisingly, they are named cv2.BackgroundSubtractorMOG
and cv2.BackgroundSubtractorMOG2. The latter is a more recent and improved
implementation, which adds support for shadow detection, so we will use it.

As a starting point, let's take our basic background subtraction script from the previous
section. We will make the following modifications to it:

Replace our basic background subtraction model with a MOG background1.
subtractor.
As input, use a video file instead of a camera.2.
Remove the use of Gaussian blur.3.
Adjust the parameters used in the thresholding, morphology, and contour4.
analysis steps.

These modifications affect a few lines of code, which are scattered throughout the script.
Near the top of the script, let's initialize the MOG background subtractor and modify the
size of the morphology kernels, as shown in bold in the following code block:

import cv2

bg_subtractor = cv2.createBackgroundSubtractorMOG2(detectShadows=True)

erode_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))



Tracking Objects Chapter 8

[ 209 ]

Note that OpenCV provides a function, cv2.createBackgroundSubtractorMOG2, to
create an instance of cv2.BackgroundSubtractorMOG2. The function accepts a parameter,
detectShadows, which we set to True so that the shadow regions will be marked as such
and not marked as part of the foreground.

The remaining changes, including the use of the MOG background subtractor to obtain a
foreground/shadow/background mask, are marked in bold in the following code block:

cap = cv2.VideoCapture('hallway.mpg')
success, frame = cap.read()
while success:

    fg_mask = bg_subtractor.apply(frame)

    _, thresh = cv2.threshold(fg_mask, 244, 255, cv2.THRESH_BINARY)
    cv2.erode(thresh, erode_kernel, thresh, iterations=2)
    cv2.dilate(thresh, dilate_kernel, thresh, iterations=2)

    contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                                      cv2.CHAIN_APPROX_SIMPLE)

    for c in contours:
        if cv2.contourArea(c) > 1000:
            x, y, w, h = cv2.boundingRect(c)
            cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 0), 2)

    cv2.imshow('mog', fg_mask)
    cv2.imshow('thresh', thresh)
    cv2.imshow('detection', frame)

    k = cv2.waitKey(30)
    if k == 27:  # Escape
        break

    success, frame = cap.read()

When we pass a frame to the background subtractor's apply method, the subtractor
updates its internal model of the background and then returns a mask. As we previously
discussed, the mask is white (255) for foreground segments, gray (127) for shadow
segments, and black (0) for background segments. For our purposes, we treat shadows as
the background, so we apply a nearly white threshold (244) to the mask.



Tracking Objects Chapter 8

[ 210 ]

The following set of screenshots shows a mask from the MOG detector (the top-left
photograph), a thresholded and morphed version of this mask (the top-right photograph),
and the detection result (the bottom photograph):



Tracking Objects Chapter 8

[ 211 ]

For comparison, if we disabled shadow detection by setting detectShadows=False, we
would get results such as the following set of screenshots:

This scene contains not only shadows but also reflections, due to the polished floor and
wall. When shadow detection is enabled, we are able to use a threshold to remove the
shadows and reflections from our mask, leaving us with an accurate detection rectangle
around the man in the hall. However, when shadow detection is disabled, we have two
detections, which are both, arguably, inaccurate. One detection covers the man, his shadow,
and his reflection on the floor. The second detection covers the man's reflection on the wall.
These are, arguably, inaccurate detections because the man's shadow and reflections are not
really moving objects, even though they are visual artifacts of a moving object.



Tracking Objects Chapter 8

[ 212 ]

So far, we have seen that a background subtraction script can be very concise and that a few
small changes can drastically change the algorithm and the results, for better or for worse.
Continuing in the same vein, let's see how easily we can adapt our code to use another of
OpenCV's advanced background subtractors to find another kind of moving object.

Using a KNN background subtractor
By modifying just five lines of code in our MOG background subtraction script, we can use
a different background subtraction algorithm, different morphology parameters, and a
different video as input. Thanks to the high-level interface that OpenCV provides, even
such simple changes enable us to successfully handle a wide variety of background
subtraction tasks.

Just by replacing cv2.createBackgroundSubtractorMOG2 with
cv2.createBackgroundSubtractorKNN, we can we use a background subtractor based
on KNN clustering instead of MOG clustering:

bg_subtractor = cv2.createBackgroundSubtractorKNN(detectShadows=True)

Note that despite the change in algorithm, the detectShadows parameter is still
supported. Additionally, the apply method is still supported, so we do not need to change
anything related to the use of the background subtractor later in the script.

Remember that cv2.createBackgroundSubtractorMOG2 returns a new
instance of the cv2.BackgroundSubtractorMOG2 class. Similarly,
cv2.createBackgroundSubtractorKNN returns a new instance of the
cv2.BackgroundSubtractorKNN class. Both of these classes are
subclasses of cv2.BackgroundSubtractor, which defines common
methods such as apply.

With the following changes, we can use morphology kernels that are slightly better adapted
to a horizontally elongated object (in this case, a car), and we can use a video of traffic as
input:

erode_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 5))
dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (17, 11))

cap = cv2.VideoCapture('traffic.flv')



Tracking Objects Chapter 8

[ 213 ]

To reflect the change in algorithm, let's change the title of the mask's window from 'mog'
to 'knn':

    cv2.imshow('knn', fg_mask)

The following set of screenshots shows the result of motion detection:



Tracking Objects Chapter 8

[ 214 ]

The KNN background subtractor, along with its ability to differentiate between objects and
shadows, has worked quite well here. All cars have been individually detected; even
though some cars are close to each other, they have not been merged into one detection. For
three out of the five cars, the detection rectangles are accurate. For the dark car in the
bottom-left part of the video frame, the background subtractor has failed to fully
differentiate the rear of the car from the asphalt. For the white car in the top-center part of
the frame, the background subtractor has failed to fully differentiate the car and its shadow
from the white markings on the road. Nonetheless, overall, this is a useful detection result
that could enable us to count the number of cars traveling in each lane.

As we have seen, a few simple variations on a script can produce very different background
subtraction results. Let's consider how we could further explore this observation.

Using GMG and other background subtractors
You are free to experiment with your own modifications to our background subtraction
script. If you have obtained OpenCV with the optional opencv_contrib modules, as
described in Chapter 1, Setting Up OpenCV, then several more background subtractors are
available to you in the cv2.bgsegm module. They can be created using the following
functions:

cv2.bgsegm.createBackgroundSubtractorCNT

cv2.bgsegm.createBackgroundSubtractorGMG

cv2.bgsegm.createBackgroundSubtractorGSOC

cv2.bgsegm.createBackgroundSubtractorLSBP

cv2.bgsegm.createBackgroundSubtractorMOG

cv2.bgsegm.createSyntheticSequenceGenerator

These functions do not support the detectShadows parameter, and they create
background subtractors that do not support shadow detection. However, all the
background subtractors support the apply method.

As an example of how to modify our background subtraction sample to use one of the
cv2.bgsegm subtractors in the preceding list, let's use a GMG background subtractor. The
relevant modifications are highlighted in bold in the following block of code:

import cv2

bg_subtractor = cv2.bgsegm.createBackgroundSubtractorGMG()

erode_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (13, 9))



Tracking Objects Chapter 8

[ 215 ]

dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (17, 11))

cap = cv2.VideoCapture('traffic.flv')
success, frame = cap.read()
while success:

    fg_mask = bg_subtractor.apply(frame)

    _, thresh = cv2.threshold(fg_mask, 244, 255, cv2.THRESH_BINARY)
    cv2.erode(thresh, erode_kernel, thresh, iterations=2)
    cv2.dilate(thresh, dilate_kernel, thresh, iterations=2)

    contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                                      cv2.CHAIN_APPROX_SIMPLE)

    for c in contours:
        if cv2.contourArea(c) > 1000:
            x, y, w, h = cv2.boundingRect(c)
            cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 255, 0), 2)

    cv2.imshow('gmg', fg_mask)
    cv2.imshow('thresh', thresh)
    cv2.imshow('detection', frame)

    k = cv2.waitKey(30)
    if k == 27: # Escape
        break

    success, frame = cap.read()

Note the modifications are similar to the ones we saw in the previous section, Using a KNN
background subtractor. We simply use a different function to create the GMG subtractor, we
adjust the morphology kernels' sizes to values that work better for this algorithm, and we
change one of the window titles to 'gmg'.

The GMG algorithm is named after its authors, Andrew B. Godbehere,
Akihiro Matsukawa, and Ken Goldberg. They describe it in their paper,
Visual Tracking of Human Visitors under Variable-Lighting Conditions for a
Responsive Audio Art Installation (ACC, 2012), which is available at https:/
/ieeexplore.ieee.org/document/6315174. The GMG background
subtractor takes a few frames to initialize itself before it starts producing a
mask with white (object) regions.

https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174
https://ieeexplore.ieee.org/document/6315174


Tracking Objects Chapter 8

[ 216 ]

Compared to the KNN background subtractor, the GMG background subtractor produces
worse results with our sample video of traffic. This is partly because OpenCV's
implementation of GMG does not differentiate between shadows and solid objects, so the
detection rectangles are elongated in the direction of the cars' shadows or reflections. Here
is a sample of the output:

When you are finished experimenting with background subtractors, let's proceed to
examine other tracking techniques that rely on a template of an object we are trying to
track, rather than a template of the background.



Tracking Objects Chapter 8

[ 217 ]

Tracking colorful objects using MeanShift
and CamShift
We have seen that background subtraction can be an effective technique for detecting
moving objects; however, we know that it has some inherent limitations. Notably, it
assumes that the current background can be predicted based on past frames. This
assumption is fragile. For example, if the camera moves, the entire background model
could suddenly become outdated. Thus, in a robust tracking system, it is important to build
some kind of model of foreground objects rather than just the background.

We have already seen various ways of detecting objects in Chapter 5, Detecting and
Recognizing Faces, Chapter 6, Retrieving Images and Searching Using Image Descriptors,
and Chapter 7, Building Custom Object Detectors. For object detection, we favored algorithms
that could deal with a lot of variation within a class of objects, so that our car detector was
not too particular about what shape or color of car it would detect. For object tracking, our
needs are a bit different. If we were tracking cars, we would want a different model for
each car in the scene so that a red car and a blue car would not get mixed up. We would
want to track the motion of each car separately.

Once we have detected a moving object (by background subtraction or other means), we
would like to describe the object in a way that distinguishes it from other moving objects. In
this way, we can continue to identify and track the object even if it crosses paths with
another moving object. A color histogram may serve as a sufficiently unique description.
Essentially, an object's color histogram is an estimate of the probability distribution of pixel
colors in the object. For example, the histogram could indicate that each pixel in the object is
10% likely to be blue. The histogram is based on the actual colors observed in the object's
region of a reference image. For example, the reference image could be the video frame in
which we first detected the moving object.

Compared to other ways of describing an object, a color histogram has some properties that
are particularly appealing in the context of motion tracking. The histogram serves as a
lookup table that directly maps pixel values to probabilities, so it enables us to use every
pixel as a feature, at a low computational cost. In this way, we can afford to perform
tracking with very fine spatial resolution in real time. To find the most likely location of an
object that we are tracking, we just have to find the region of interest where the pixel values
map to the maximum probability, according to the histogram.



Tracking Objects Chapter 8

[ 218 ]

Naturally, this approach is leveraged by an algorithm with a catchy name: MeanShift. For
each frame in a video, the MeanShift algorithm performs tracking iteratively by computing
a centroid based on probability values in the current tracking rectangle, shifting the
rectangle's center to this centroid, recomputing the centroid based on values in the new
rectangle, shifting the rectangle again, and so on. This process continues until convergence
is achieved (meaning that the centroid ceases to move or nearly ceases to move) or until a
maximum number of iterations is reached. Essentially, MeanShift is a clustering algorithm,
with applications that extend beyond computer vision. The algorithm was first described in
a paper entitled The estimation of the gradient of a density function, with applications in pattern
recognition (IEEE, 1975), by K. Fukunaga and L. Hostetler. The paper is available to IEEE
subscribers at https://ieeexplore.ieee.org/document/1055330.

Before delving into a sample script, let's consider the type of tracking result we want to
achieve with MeanShift, and let's learn more about OpenCV's functionality pertaining to
color histograms.

Planning our MeanShift sample
For our first demonstration of MeanShift, we are not concerned with the approach to the
initial detection of moving objects. We will use a naive approach that simply chooses the
central part of the first video frame as our initial region of interest. (The user must ensure
that an object of interest is initially located in the center of the video.) We will calculate a
histogram of this initial region of interest. Then, in subsequent frames, we will use this
histogram and the MeanShift algorithm to track the object.

Visually, the MeanShift demo will resemble many of the object detection samples that we
have previously written. For every frame, we will draw a blue outline around the tracking
rectangle, as shown here:

https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330
https://ieeexplore.ieee.org/document/1055330


Tracking Objects Chapter 8

[ 219 ]

Here, the toy phone has a lilac color that is not present in any other object in the scene.
Thus, the phone has a distinctive histogram, making it easy to track. Next, let's consider
how such a histogram is calculated and then used as a lookup table of probabilities.

Calculating and back-projecting color histograms
To calculate a color histogram, OpenCV provides a function called cv2.calcHist. To
apply a histogram as a lookup table, OpenCV provides another function
called cv2.calcBackProject. The latter operation is known as histogram back-
projection, and it transforms a given image into a probability map based on a given
histogram. Let's first visualize the output of these two functions, and then examine their
parameters.

A histogram can use any color model, such as blue-green-red (BGR), hue-saturation-value
(HSV), or grayscale. (For an introduction to color models, refer to Chapter 3, Processing
Images with OpenCV, specifically the Converting images between different color
models section.) For our samples, we will use the histograms of only the hue (H) channel of
the HSV color model. The following diagram is a visualization of a hue histogram:

This histogram visualization is a sample of the output from an image-
viewing application called DPEx (http://www.rysys.co.jp/en/).

http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/
http://www.rysys.co.jp/en/


Tracking Objects Chapter 8

[ 220 ]

On the x axis of this plot, we have the hue, and on the y axis, we have the hue's estimated
probability or, in other words, the proportion of pixels in the image that have the given
hue. If you are reading the e-book edition of this book, you will see that the plot is color-
coded according to hue. From left to right, the plot progresses through the hues of the color
wheel: red, yellow, green, cyan, blue, magenta, and, finally, back to red. This particular
histogram seems to represent an object with a lot of yellow in it.

OpenCV represents H values with a range from 0 to 179. Some other systems use a range
from 0 to 359 (like the degrees of a circle) or from 0 to 255.

Some caution is required in interpreting hue histograms because pure
black and pure white pixels do not have a meaningful hue; however, their
hue is usually represented as 0 (red).

When we use cv2.calcHist to generate a hue histogram, it returns a 1D array that is
conceptually similar to the preceding plot. Alternatively, depending on the parameters we
provide, we could use cv2.calcHist to generate a histogram of a different channel or of
two channels at once. In the latter case, cv2.calcHist would return a 2D array.

Once we have a histogram, we can back-project the histogram onto any image.
cv2.calcBackProject produces a back-projection in the format of an 8-bit grayscale
image, with pixel values that potentially range from 0 (indicating a low probability) to 255
(indicating a high probability), depending on how we scale the values. For example,
consider the following pair of photographs, showing a back-projection and then a
visualization of the MeanShift tracking result:



Tracking Objects Chapter 8

[ 221 ]



Tracking Objects Chapter 8

[ 222 ]

Here, we are tracking a small object whose main colors are yellow, red, and brown. The
back-projection is brightest in regions that are actually part of the object. The back-
projection is also somewhat bright in other regions of similar color, such as Joseph Howse's
brown beard, the yellow rims of his glasses, and the red border of one of the posters in the
background.

Now that we have visualized the outputs of cv2.calcHist and cv2.calcBackProject,
let's examine the parameters that these functions accept.

Understanding the parameters of cv2.calcHist
The cv2.calcHist function has the following signature:

calcHist(images, channels, mask, histSize, ranges[, hist[,
         accumulate]]) -> hist

The following table contains descriptions of the parameters (adapted from the official
OpenCV documentation):

Parameter Description

images
This parameter is a list of one or more source images. They should all have
the same bit depth (8-bit, 16-bit, or 32-bit) and the same size.

channels
This parameter is a list of the indices of the channels used to compute the
histogram. For example, channels=[0] means that only the first channel
(that is, the channel with index 0) is used to compute the histogram.

mask

This parameter is a mask. If it is None, no masking is performed; every region
of the images is used in the histogram calculation. If it is not None, then it
must be an 8-bit array of the same size as each image in images. The mask's
nonzero elements mark the regions of the images that should be used in the
histogram calculation.

histSize

This parameter is a list of the number of histogram bins to use for each
channel. The length of the histSize list must be the same as the length of
the channels list. For example, if channels=[0] and histSize=[180], the
histogram has 180 bins for the first channel (and any other channels are
unused).



Tracking Objects Chapter 8

[ 223 ]

ranges

This parameter is a list that specifies the ranges (inclusive lower bound and
exclusive upper bound) of values to use for each channel. The length of the
ranges list must be twice the length of the channels list. For example, if
channels=[0], histSize=[180], and ranges=[0, 180], the histogram
has 180 bins for the first channel, and these bins are based on values in the
range from 0 to 179; in other words, there is one input value per bin.

hist
This optional parameter is the output histogram. If it is None (the default), a
new array will be returned as the output histogram.

accumulate

This optional parameter is the accumulate flag. By default, it is False. If it
is True, then the original content of hist is not cleared; instead, the new
histogram is added to the original content of hist. This feature enables you
to compute a single histogram from several lists of images, or to update the
histogram over time.

In our samples, we will calculate the hue histogram of a region of interest like so:

roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])

Next, let's consider the parameters of cv2.calcBackProject.

Understanding the parameters of cv2.calcBackProject
The cv2.calcBackProject function has the following signature:

calcBackProject(images, channels, hist, ranges,
                scale[, dst]) -> dst

The following table contains descriptions of the parameters (adapted from the official
OpenCV documentation):

Parameter Description

images
This parameter is a list of one or more source images. They all should have the
same bit depth (8-bit, 16-bit, or 32-bit) and the same size.

channels
This parameter must be the same as the channels parameter used in
calcHist.

hist This parameter is the histogram.
ranges This parameter must be the same as the ranges parameter used in calcHist.

scale
This parameter is a scale factor. The back-projection is multiplied by this scale
factor.



Tracking Objects Chapter 8

[ 224 ]

dst
This optional parameter is the output back-projection. If it is None (the default),
a new array will be returned as the back-projection.

In our samples, we will use code similar to the following line to back-project a hue
histogram on to an HSV image:

back_proj = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)

Having examined the cv2.calcHist and cv2.calcBackProject functions in detail, let's
now put them into action in a script that performs tracking with MeanShift.

Implementing the MeanShift example
Let's go sequentially through the implementation of our MeanShift example:

Like our basic background subtraction example, our MeanShift example begins1.
by capturing (and discarding) several frames from a camera so that the
autoexposure can adjust:

import cv2

cap = cv2.VideoCapture(0)

# Capture several frames to allow the camera's autoexposure to
# adjust.
for i in range(10):
    success, frame = cap.read()
if not success:
    exit(1)

By the 10th frame, we assume that the exposure is good; therefore, we can extract2.
an accurate histogram of a region of interest. The following code defines the
bounds of the region of interest (ROI):

# Define an initial tracking window in the center of the frame.
frame_h, frame_w = frame.shape[:2]
w = frame_w//8
h = frame_h//8
x = frame_w//2 - w//2
y = frame_h//2 - h//2
track_window = (x, y, w, h)



Tracking Objects Chapter 8

[ 225 ]

Then, the following code selects the ROI's pixels and converts them to HSV color3.
space:

roi = frame[y:y+h, x:x+w]
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)

Next, we calculate the hue histogram of the ROI:4.

mask = None
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])

After the histogram is calculated, we normalize the values to a range from 0 to5.
255:

cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)

Remember that MeanShift performs a number of iterations before reaching6.
convergence; however, this convergence is not assured. Thus, OpenCV allows us
to specify the so-called termination criteria. Let's define the termination criteria
as follows:

# Define the termination criteria:
# 10 iterations or convergence within 1-pixel radius.
term_crit = \
    (cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_FPS, 10, 1)

Based on these criteria, MeanShift will stop calculating the centroid shift after 10
iterations (the count criterion) or when the shift is no longer larger than 1 pixel
(the epsilon criterion). The combination of flags (cv2.TERM_CRITERIA_COUNT |
cv2.TERM_CRITERIA_EPS) indicates that we are using both of these criteria.

Now that we have calculated a histogram and defined MeanShift's termination7.
criteria, let's start our usual loop in which we capture and process frames from
the camera. With each frame, the first thing we do is convert it to the HSV color
space:

success, frame = cap.read()
while success:

    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Now that we have an HSV image, we can perform the long-awaited operation of8.
histogram back-projection:

back_proj = cv2.calcBackProject(
    [hsv], [0], roi_hist, [0, 180], 1)



Tracking Objects Chapter 8

[ 226 ]

The back-projection, the tracking window, and the termination criteria can be9.
passed to cv2.meanShift, which is OpenCV's implementation of the MeanShift
algorithm. Here is the function call:

# Perform tracking with MeanShift.
num_iters, track_window = cv2.meanShift(
    back_proj, track_window, term_crit)

Note that MeanShift returns the number of iterations that it ran, as well as
the new tracking window that it found. Optionally, we could compare the
number of iterations to our termination criteria in order to determine
whether the result converged. (If the actual number of iterations is less
than the maximum, the result must have converged.)

Finally, we draw and show the updated tracking rectangle:10.

# Draw the tracking window.
x, y, w, h = track_window
cv2.rectangle(
    frame, (x, y), (x+w, y+h), (255, 0, 0), 2)

cv2.imshow('back-projection', back_proj)
cv2.imshow('meanshift', frame)

That is the whole example. If you run the program, it should produce an output that is
similar to the screenshots we saw earlier, in the Calculating and back-projecting color
histograms section.

By now, you should have a good idea of how color histograms, back-projections, and
MeanShift work. However, the preceding program (and MeanShift in general) has a
limitation: the size of the window does not change with the size of the object in the frames
being tracked.

Gary Bradski – one of the founders of the OpenCV project – published a paper in 1988 to
improve the accuracy of MeanShift. He described a new algorithm called Continuously
Adaptive MeanShift (CAMShift or CamShift), which is very similar to MeanShift but also
adapts the size of the tracking window when MeanShift reaches convergence. Let's take a
look at an example of CamShift next.



Tracking Objects Chapter 8

[ 227 ]

Using CamShift
Although CamShift is a more complex algorithm than MeanShift, OpenCV provides a very
similar interface for the two algorithms. The main difference is that a call
to cv2.CamShift returns a rectangle with a particular rotation that follows the rotation of
the object being tracked. With just a few modifications to the preceding MeanShift example,
we can instead use CamShift and draw a rotated tracking rectangle. All of the necessary
changes are highlighted in bold in the following excerpt:

import cv2
import numpy as np

# ... Initialize the tracking window and histogram as previously ...

success, frame = cap.read()
while success:

    # Perform back-projection of the HSV histogram onto the frame.
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    back_proj = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)

    # Perform tracking with CamShift.
    rotated_rect, track_window = cv2.CamShift(
        back_proj, track_window, term_crit)

    # Draw the tracking window.
    box_points = cv2.boxPoints(rotated_rect)
    box_points = np.int0(box_points)
    cv2.polylines(frame, [box_points], True, (255, 0, 0), 2)

    cv2.imshow('back-projection', back_proj)
    cv2.imshow('camshift', frame)

    k = cv2.waitKey(1)
    if k == 27: # Escape
        break

    success, frame = cap.read()

The arguments to cv2.CamShift are unchanged; they have the same meanings and the
same values as the arguments to cv2.meanShift in our previous example.



Tracking Objects Chapter 8

[ 228 ]

We use the cv2.boxPoints function to find the vertices of the rotated tracking rectangle.
Then, we use the cv2.polylines function to draw the lines connecting these vertices. The
following screenshot shows the result:

By now, you should be familiar with two families of tracking techniques. The first family
uses background subtraction. The second uses histogram back-projection, combined with
either MeanShift or CamShift. Now, let's meet the Kalman filter, which exemplifies a third
family; it finds trends or, in other words, predicts future motion based on past motion.

Finding trends in motion using the Kalman
filter
The Kalman filter is an algorithm developed mainly (but not exclusively) by Rudolf
Kalman in the late 1950s. It has found practical applications in many fields, particularly
navigation systems for all sorts of vehicles from nuclear submarines to aircraft.



Tracking Objects Chapter 8

[ 229 ]

The Kalman filter operates recursively on a stream of noisy input data to produce a
statistically optimal estimate of the underlying system state. In the context of computer
vision, the Kalman filter can smoothen the estimate of a tracked object's position.

Let's consider a simple example. Think of a small red ball on a table and imagine you have
a camera pointing at the scene. You identify the ball as the subject to be tracked, and flick it
with your fingers. The ball will start rolling on the table in accordance with the laws of
motion.

If the ball is rolling at a speed of 1 meter per second in a particular direction, it is easy to
estimate where the ball will be in 1 second's time: it will be 1 meter away. The Kalman filter
applies laws such as this to predict an object's position in the current video frame based on
tracking results gathered in previous frames. The Kalman filter itself is not gathering these
tracking results, but it is updating its model of the object's motion based on the tracking
results derived from another algorithm, such as MeanShift. Naturally, the Kalman filter
cannot foresee new forces acting on the ball – such as a collision with a pencil lying on the
table – but it can update its model of the motion after the fact, based on new tracking
results. Through the use of the Kalman filter, we can obtain estimates that are more stable
and more consistent with the laws of motion than the tracking results alone.

Understanding the predict and update phases
From the preceding description, we gather that the Kalman filter's algorithm has two
phases:

Predict: In the first phase, the Kalman filter uses the covariance calculated up to
the current point in time to estimate the object's new position.
Update: In the second phase, the Kalman filter records the object's position and
adjusts the covariance for the next cycle of calculations.

The update phase is – in OpenCV's terms – a correction. Thus, OpenCV provides
a cv2.KalmanFilter class with the following methods:

predict([, control]) -> retval
correct(measurement) -> retval

For the purpose of smoothly tracking objects, we will call the predict method to estimate
the position of an object, and then use the correct method to instruct the Kalman filter to
adjust its calculations based on a new tracking result from another algorithm such as
MeanShift. However, before we combine the Kalman filter with a computer vision
algorithm, let's examine how it performs with position data from a simple motion sensor.



Tracking Objects Chapter 8

[ 230 ]

Tracking a mouse cursor
Motion sensors have been commonplace in user interfaces for a long time. A computer's
mouse senses its own motion relative to a surface such as a table. The mouse is a real,
physical object, so it is reasonable to apply the laws of motion in order to predict changes in
mouse coordinates. We are going to do exactly this as a demo of the Kalman filter.

Our demo will implement the following sequence of operations:

Start by initializing a black image and a Kalman filter. Show the black image in a1.
window.
Every time the windowed application processes input events, use the Kalman2.
filter to predict the mouse's position. Then, correct the Kalman filter's model
based on the actual mouse coordinates. On top of the black image, draw a red
line from the old predicted position to the new predicted position, and then draw
a green line from the old actual position to the new actual position. Show the
drawing in the window.
When the user hits the Esc key, exit and save the drawing to a file.3.

To begin the script, the following code initializes an 800 x 800 black image:

import cv2
import numpy as np

# Create a black image.
img = np.zeros((800, 800, 3), np.uint8)

Now, let's initialize the Kalman filter:

# Initialize the Kalman filter.
kalman = cv2.KalmanFilter(4, 2)
kalman.measurementMatrix = np.array(
    [[1, 0, 0, 0],
     [0, 1, 0, 0]], np.float32)
kalman.transitionMatrix = np.array(
    [[1, 0, 1, 0],
     [0, 1, 0, 1],
     [0, 0, 1, 0],
     [0, 0, 0, 1]], np.float32)
kalman.processNoiseCov = np.array(
    [[1, 0, 0, 0],
     [0, 1, 0, 0],
     [0, 0, 1, 0],
     [0, 0, 0, 1]], np.float32) * 0.03



Tracking Objects Chapter 8

[ 231 ]

Based on the preceding initialization, our Kalman filter will track a 2D object's position and
velocity. We will take a deeper look at the process of initializing a Kalman filter in Chapter
9, Camera Models and Augmented Reality, where we will track a 3D object's position, velocity,
acceleration, rotation, angular velocity, and angular acceleration. For now, let's just take
note of the two parameters in cv2.KalmanFilter(4, 2). The first parameter is the
number of variables tracked (or predicted) by the Kalman filter, in this case, 4: the x
position, the y position, the x velocity, and the y velocity. The second parameter is the
number of variables provided to the Kalman filter as measurements, in this case, 2: the x
position and the y position. We also initialize several matrices that describe the
relationships among all these variables.

Having initialized the image and the Kalman filter, we also have to declare variables to
hold the actual (measured) and predicted mouse coordinates. Initially, we have no
coordinates, so we will assign None to these variables:

last_measurement = None
last_prediction = None

Then, we declare a callback function that handles mouse movement. This function is going
to update the state of the Kalman filter, and draw a visualization of both the unfiltered
mouse movement and the Kalman-filtered mouse movement. The first time we receive
mouse coordinates, we initialize the Kalman filter's state so that its initial prediction is the
same as the actual initial mouse coordinates. (If we did not do this, the Kalman filter would
assume that the initial mouse position was (0, 0).) Subsequently, whenever we receive
new mouse coordinates, we correct the Kalman filter with the current measurement,
calculate the Kalman prediction, and, finally, draw two lines: a green line from the last
measurement to the current measurement and a red line from the last prediction to the
current prediction. Here is the callback function's implementation:

def on_mouse_moved(event, x, y, flags, param):
    global img, kalman, last_measurement, last_prediction

    measurement = np.array([[x], [y]], np.float32)
    if last_measurement is None:
        # This is the first measurement.
        # Update the Kalman filter's state to match the measurement.
        kalman.statePre = np.array(
            [[x], [y], [0], [0]], np.float32)
        kalman.statePost = np.array(
            [[x], [y], [0], [0]], np.float32)
        prediction = measurement
    else:
        kalman.correct(measurement)
        prediction = kalman.predict()  # Gets a reference, not a copy



Tracking Objects Chapter 8

[ 232 ]

        # Trace the path of the measurement in green.
        cv2.line(img, (last_measurement[0], last_measurement[1]),
                 (measurement[0], measurement[1]), (0, 255, 0))

        # Trace the path of the prediction in red.
        cv2.line(img, (last_prediction[0], last_prediction[1]),
                 (prediction[0], prediction[1]), (0, 0, 255))

    last_prediction = prediction.copy()
    last_measurement = measurement

The next step is to initialize the window and pass our callback function to
the cv2.setMouseCallback function:

cv2.namedWindow('kalman_tracker')
cv2.setMouseCallback('kalman_tracker', on_mouse_moved)

Since most of the program's logic is in the mouse callback, the implementation of the main
loop is simple. We just continually show the updated image until the user hits the Esc key:

while True:
    cv2.imshow('kalman_tracker', img)
    k = cv2.waitKey(1)
    if k == 27:  # Escape
        cv2.imwrite('kalman.png', img)
        break

Run the program and move your mouse around. If you make a sudden turn at high speed,
you will notice that the prediction line (in red) will trace a wider curve than the
measurement line (in green). This is because the prediction is following the momentum of
the mouse's movement up to that time. Here is a sample result:



Tracking Objects Chapter 8

[ 233 ]

Perhaps the preceding diagram will give us inspiration for our next sample application, in
which we track pedestrians.

Tracking pedestrians
Up to this point, we have familiarized ourselves with the concepts of motion detection,
object detection, and object tracking. You are probably anxious to put this newfound
knowledge to good use in a real-life scenario. Let's do just that by tracking pedestrians in a
video from a surveillance camera.

You can find a surveillance video inside the OpenCV repository
at samples/data/vtest.avi. A copy of this video is located inside this
book's GitHub repository at chapter08/pedestrians.avi.

Let's lay out a plan and then implement the application!

Planning the flow of the application
The application will adhere to the following logic:

Capture frames from a video file.1.
Use the first 20 frames to populate the history of a background subtractor.2.
Based on background subtraction, use the 21st frame to identify moving3.
foreground objects. We will treat these as pedestrians. For each pedestrian, assign
an ID and an initial tracking window, and then calculate a histogram.
For each subsequent frame, track each pedestrian using a Kalman filter and4.
MeanShift.

If this were a real-world application, you would probably store a record of each
pedestrian's route through the scene so that a user could analyze it later. However, this
type of record-keeping is beyond the remit of this example.

Additionally, in a real-world application, you would make sure to identify new pedestrians
entering the scene; however, for now, we will focus on tracking only those objects that are
in the scene near the start of the video.



Tracking Objects Chapter 8

[ 234 ]

You will find the code for this application inside the book's GitHub repository
at chapter08/track_pedestrians.py. Before examining the implementation, let's
briefly digress to consider programming paradigms and how they relate to our use of
OpenCV.

Comparing the object-oriented and functional
paradigms
Although most programmers are either familiar (or work on a constant basis) with OOP,
another paradigm called FP has, for many years, been gaining support among
programmers who favor a purer mathematical foundation.

The works of Samuel Howse demonstrate a specification of a
programming language with a pure mathematical foundation. You can
find his doctoral thesis, NummSquared 2006a0 Explained, at https://
nummist.com/poohbist/NummSquared2006a0Explained.pdf, and his
paper, NummSquared: a New Foundation for Formal Methods, at https://
nummist.com/poohbist/NummSquaredFormalMethods.pdf.

FP treats programs as the evaluation of mathematical functions, allows functions to return
functions, and permits functions as arguments in a function. The strength of FP resides not
only in what it can do, but also in what it can avoid, or aims at avoiding: for example, side
effects and changing states. If the topic of FP has sparked an interest, make sure that you
take a look at languages such as Haskell, Clojure, or Meta Language (ML).

So, what is a side effect in programming terms? A function is said to have
side effects if it produces any changes that are accessible outside its local
scope, except for its return values. Python, like many other languages, is
susceptible to side effects because it allows you to gain access to member
variables and global variables – and, sometimes, this access can be
accidental!

In languages that are not purely functional, a function's output can vary even when we pass
it the same parameters repeatedly. For example, if a function takes an object as an
argument, and the computation relies on the internal state of that object, the function will
return different results according to changes in the object's state. This is a common
occurrence in OOP with languages such as Python and C++.

https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquared2006a0Explained.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf
https://nummist.com/poohbist/NummSquaredFormalMethods.pdf


Tracking Objects Chapter 8

[ 235 ]

So, why this digression? Well, it is a good occasion to consider the paradigms used in our
own samples and in OpenCV, and how they differ from a purer mathematical approach.
Throughout this book, we have often used global variables or object-oriented classes with
member variables. The next program is another example of OOP. OpenCV, too, contains
many functions with side effects and many object-oriented classes.

For example, any OpenCV drawing function, such as cv2.rectangle or cv2.circle,
modifies the image that we pass to it as an argument. This approach contravenes one of
FP's cardinal rules: avoid side effects and changes in state.

As a brief exercise, let's wrap cv2.rectangle in another Python function to perform a
drawing in an FP style, without any side effects. The following implementation relies on
making a copy of the input image, rather than modifying the original:

def draw_rect(img, top_left, bottom_right, color,
              thickness, fill=cv2.LINE_AA):
    new_img = img.copy()
    cv2.rectangle(new_img, top_left, bottom_right, color,
                  thickness, fill)
    return new_img

This approach – while computationally more expensive due to the copy operation – allows
for code such as the following to run without side effects:

frame = camera.read()
frame_with_rect = draw_rect(
    frame, (0, 0), (10, 10), (0, 255, 0), 1)

Here, frame and frame_with_rect are references to two different NumPy arrays
containing different values. If we had used cv2.rectangle instead of our FP-
inspired draw_rect wrapper, then frame and frame_with_rect would have been
references to one and the same NumPy array (containing a drawing of a rectangle on top of
the original image).

To conclude this digression, let's note that a variety of programming languages and
paradigms can be applied successfully to computer vision problems. It is useful to know
about multiple languages and paradigms so that you can choose the right tool for a given
job.

Now, let's get back to our program and explore the implementation of a surveillance
application, tracking moving objects in a video.



Tracking Objects Chapter 8

[ 236 ]

Implementing the Pedestrian class
The nature of the Kalman filter provides the main rationale for creating a Pedestrian
class. The Kalman filter can predict the position of an object based on historical
observations and can correct the prediction based on the actual data, but it can only do this
for one object. As a consequence, we need one Kalman filter per object tracked.

Each Pedestrian object will act as a holder for a Kalman filter, a color histogram
(calculated on the first detection of the object and used as a reference for the subsequent
frames), and a tracking window, which will be used by the MeanShift algorithm.
Furthermore, each pedestrian has an ID, which we will display so that we can easily
distinguish between all of the pedestrians being tracked. Let's proceed sequentially through
the class's implementation:

As arguments, the Pedestrian class's constructor takes an ID, an initial frame in1.
HSV format, and an initial tracking window. Here are the declarations of the
class and its constructor:

import cv2
import numpy as np

class Pedestrian():
    """A tracked pedestrian with a state including an ID, tracking
    window, histogram, and Kalman filter.
    """

    def __init__(self, id, hsv_frame, track_window):

To begin the constructor's implementation, we define variables for the ID, the2.
tracking window, and the MeanShift algorithm's termination criteria:

    self.id = id

    self.track_window = track_window
    self.term_crit = \
        (cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS, 10, 1)

We proceed by creating a normalized hue histogram of the region of interest in3.
the initial HSV image:

    # Initialize the histogram.
    x, y, w, h = track_window
    roi = hsv_frame[y:y+h, x:x+w]
    roi_hist = cv2.calcHist([roi], [0], None, [16], [0, 180])
    self.roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255,
                                  cv2.NORM_MINMAX)



Tracking Objects Chapter 8

[ 237 ]

Then, we initialize the Kalman filter:4.

    # Initialize the Kalman filter.
    self.kalman = cv2.KalmanFilter(4, 2)
    self.kalman.measurementMatrix = np.array(
        [[1, 0, 0, 0],
         [0, 1, 0, 0]], np.float32)
    self.kalman.transitionMatrix = np.array(
        [[1, 0, 1, 0],
         [0, 1, 0, 1],
         [0, 0, 1, 0],
         [0, 0, 0, 1]], np.float32)
    self.kalman.processNoiseCov = np.array(
        [[1, 0, 0, 0],
         [0, 1, 0, 0],
         [0, 0, 1, 0],
         [0, 0, 0, 1]], np.float32) * 0.03
    cx = x+w/2
    cy = y+h/2
    self.kalman.statePre = np.array(
        [[cx], [cy], [0], [0]], np.float32)
    self.kalman.statePost = np.array(
        [[cx], [cy], [0], [0]], np.float32)

Like in our mouse tracking example, we are configuring the Kalman filter to
predict the motion of a 2D point. As the initial point, we use the center of the
initial tracking window. This concludes the implementation of the constructor.

The Pedestrian class also has an update method, which we will call once per5.
frame. As arguments, the update method takes a BGR frame (to use when we
draw a visualization of the tracking result) and an HSV version of the same
frame (to use for histogram back-projection). The implementation of the update
method begins with familiar code for histogram back-projection and MeanShift,
as displayed in the following lines:

def update(self, frame, hsv_frame):

    back_proj = cv2.calcBackProject(
        [hsv_frame], [0], self.roi_hist, [0, 180], 1)

    ret, self.track_window = cv2.meanShift(
        back_proj, self.track_window, self.term_crit)
    x, y, w, h = self.track_window
    center = np.array([x+w/2, y+h/2], np.float32)



Tracking Objects Chapter 8

[ 238 ]

Note that we have extracted the tracking window's center coordinates because6.
we want to perform Kalman filtering on them. We proceed to do exactly this, and
then we update the tracking window so that it is centered on the corrected
coordinates:

    prediction = self.kalman.predict()
    estimate = self.kalman.correct(center)
    center_offset = estimate[:,0][:2] - center
    self.track_window = (x + int(center_offset[0]),
                         y + int(center_offset[1]), w, h)
    x, y, w, h = self.track_window

To conclude the update method, we draw the Kalman filter's prediction as a7.
blue circle, the corrected tracking window as a cyan rectangle, and the
pedestrian's ID as blue text above the rectangle:

    # Draw the predicted center position as a circle.
    cv2.circle(frame, (int(prediction[0]), int(prediction[1])),
               4, (255, 0, 0), -1)

    # Draw the corrected tracking window as a rectangle.
    cv2.rectangle(frame, (x,y), (x+w, y+h), (255, 255, 0), 2)

    # Draw the ID above the rectangle.
    cv2.putText(frame, 'ID: %d' % self.id, (x, y-5),
                cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0),
                1, cv2.LINE_AA)

This is all the functionality and data that we need to associate with an individual
pedestrian. Next, we need to implement a program that provides the necessary video
frames to create and update Pedestrian objects.

Implementing the main function
Now that we have a Pedestrian class to maintain data about the tracking of each
pedestrian, let's implement our program's main function. We will look at the parts of the
implementation sequentially:

We begin by loading a video file, initializing a background subtractor, and1.
setting the background subtractor's history length (that is, the number of frames
affecting the background model):

def main():



Tracking Objects Chapter 8

[ 239 ]

    cap = cv2.VideoCapture('pedestrians.avi')

    # Create the KNN background subtractor.
    bg_subtractor = cv2.createBackgroundSubtractorKNN()
    history_length = 20
    bg_subtractor.setHistory(history_length)

Then, we define morphology kernels:2.

erode_kernel = cv2.getStructuringElement(
    cv2.MORPH_ELLIPSE, (3, 3))
dilate_kernel = cv2.getStructuringElement(
    cv2.MORPH_ELLIPSE, (8, 3))

We define a list called pedestrians, which is initially empty. A little later, we3.
will add Pedestrian objects to this list. We also set up a frame counter, which
we will use to determine whether enough frames have elapsed to fill the
background subtractor's history. Here are the relevant definitions of the
variables:

pedestrians = []
num_history_frames_populated = 0

Now, we start a loop. At the start of each iteration, we try to read a video frame.4.
If this fails (for instance, at the end of the video file), we exit the loop:

while True:
    grabbed, frame = cap.read()
    if (grabbed is False):
        break

Proceeding with the body of the loop, we update the background subtractor5.
based on the newly captured frame. If the background subtractor's history is not
yet full, we simply continue to the next iteration of the loop. Here is the relevant
code:

# Apply the KNN background subtractor.
fg_mask = bg_subtractor.apply(frame)

# Let the background subtractor build up a history.
if num_history_frames_populated < history_length:
    num_history_frames_populated += 1
    continue



Tracking Objects Chapter 8

[ 240 ]

Once the background subtractor's history is full, we do more processing on each6.
newly captured frame. Specifically, we apply the same approach we used with
background subtractors earlier in this chapter: we perform thresholding, erosion,
and dilation on the foreground mask; and then we detect contours, which might
be moving objects:

# Create the thresholded image.
_, thresh = cv2.threshold(fg_mask, 127, 255,
                          cv2.THRESH_BINARY)
cv2.erode(thresh, erode_kernel, thresh, iterations=2)
cv2.dilate(thresh, dilate_kernel, thresh, iterations=2)

# Detect contours in the thresholded image.
contours, hier = cv2.findContours(
    thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

We also convert the frame to HSV format because we intend to use histograms in7.
this format for MeanShift. The following line of code performs the conversion:

hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

Once we have contours and an HSV version of the frame, we are ready to detect8.
and track moving objects. We find and draw a bounding rectangle for each
contour that is large enough to be a pedestrian. Moreover, if we have not yet
populated the pedestrians list, we do so now by adding a new Pedestrian
object based on each bounding rectangle (and the corresponding region of the
HSV image). Here is the subloop that handles the contours in the manner we
have just described:

# Draw rectangles around large contours.
# Also, if no pedestrians are being tracked yet, create
some.
should_initialize_pedestrians = len(pedestrians) == 0
id = 0
for c in contours:
    if cv2.contourArea(c) > 500:
        (x, y, w, h) = cv2.boundingRect(c)
        cv2.rectangle(frame, (x, y), (x+w, y+h),
                      (0, 255, 0), 1)
        if should_initialize_pedestrians:
            pedestrians.append(
                Pedestrian(id, frame, hsv_frame,
                           (x, y, w, h)))
    id += 1



Tracking Objects Chapter 8

[ 241 ]

By now, we have a list of pedestrians whom we are tracking. We call each9.
Pedestrian object's update method, to which we pass the original BGR frame
(for use in drawing) and the HSV frame (for use in tracking with MeanShift).
Remember that each Pedestrian object is responsible for drawing its own
information (text, the tracking rectangle, and the Kalman filter's prediction). Here
is the subloop that updates the pedestrians list:

        # Update the tracking of each pedestrian.
        for pedestrian in pedestrians:
            pedestrian.update(frame, hsv_frame)

Finally, we display the tracking results in a window, and we allow the user to10.
exit the program at any time by pressing the Esc key:

        cv2.imshow('Pedestrians Tracked', frame)

        k = cv2.waitKey(110)
        if k == 27:  # Escape
            break

if __name__ == "__main__":
    main()

There you have it: MeanShift working in tandem with the Kalman filter to track moving
objects. All being well, you should see tracking results visualized in the following manner:



Tracking Objects Chapter 8

[ 242 ]

In this cropped screenshot, the green rectangle with the thin border is the detected contour,
the cyan rectangle with the thick border is the Kalman-corrected MeanShift tracking
rectangle, and the blue dot is the center position predicted by the Kalman filter.

As usual, feel free to experiment with the script. You may want to adjust the parameters,
try a MOG background subtractor instead of KNN, or try CamShift instead of MeanShift.
These changes should affect just a few lines of code. When you have finished, next, we will
consider other possible modifications that might have a larger effect on the structure of the
script.

Considering the next steps
The preceding program can be expanded and improved in various ways, depending on the
requirements of a particular application. Consider the following examples:

You could remove a Pedestrian object from the pedestrians list (and thereby
destroy the Pedestrian object) if the Kalman filter predicts the pedestrian's
position to be outside the frame.
You could check whether each detected moving object corresponds to an existing
Pedestrian instance in the pedestrians list, and, if not, add a new object to
the list so that it will be tracked in subsequent frames.
You could train a support vector machine (SVM) and use it to classify each
moving object. Using these means, you could establish whether or not the
moving object is something you intend to track. For instance, a dog might enter
the scene but your application might require the tracking of humans only. For
more information on training an SVM, refer to Chapter 7, Building Custom Object
Detectors.

Whatever your needs, hopefully, this chapter has provided you with the necessary
knowledge to build 2D tracking applications that satisfy your requirements.



Tracking Objects Chapter 8

[ 243 ]

Summary
This chapter has dealt with video analysis and, in particular, a selection of useful
techniques for tracking objects.

We began by learning about background subtraction with a basic motion detection
technique that calculates frame differences. Then, we moved on to more complex and
efficient background subtraction algorithms – namely, MOG and KNN – which are
implemented in OpenCV's cv2.BackgroundSubtractor class.

We then proceeded to explore the MeanShift and CamShift tracking algorithms. In the
course of this, we talked about color histograms and back-projections. We also familiarized
ourselves with the Kalman filter and its usefulness in smoothing the results of a tracking
algorithm. Finally, we put all of our knowledge together in a sample surveillance
application, which is capable of tracking pedestrians (or other moving objects) in a video.

By now, our foundation in OpenCV, computer vision, and machine learning are solidifying.
We can look forward to a couple of advanced topics in the remaining two chapters of this
book. We will extend our knowledge of tracking into 3D space in Chapter 9, Camera Models
and Augmented Reality. Then, we will tackle artificial neural networks (ANNs) and dive
deeper into artificial intelligence in Chapter 10, Introduction to Neural Networks with
OpenCV.



9
Camera Models and
Augmented Reality

If you like geometry, photography, or 3D graphics, then this chapter's topics should
especially appeal to you. We will learn about the relationship between 3D space and a 2D
projection. We will model this relationship in terms of the basic optical parameters of a
camera and lens. Finally, we will apply the same relationship to the task of drawing 3D
shapes in an accurate perspective projection. Throughout all of this, we will integrate our
previous knowledge of image matching and object tracking in order to track 3D motion of a
real-world object whose 2D projection is captured by a camera in real time.

On a practical level, we will build an augmented reality application that uses information
about a camera, an object, and motion in order to superimpose 3D graphics on top of a
tracked object in real time. To achieve this, we will conquer the following technical
challenges:

Modeling the parameters of a camera and lens
Modeling a 3D object using 2D and 3D keypoints
Detecting the object by matching keypoints
Finding the object's 3D pose using the cv2.solvePnPRansac function
Smoothing the 3D pose using a Kalman filter
Drawing graphics atop the object



Camera Models and Augmented Reality Chapter 9

[ 245 ]

Over the course of this chapter, you will acquire skills that will serve you well if you go on
to build your own augmented reality engine or any other system that relies on 3D tracking,
such as a robotic navigation system.

Technical requirements
This chapter uses Python, OpenCV, and NumPy. Please refer back to Chapter 1, Setting Up
OpenCV, for installation instructions.

The completed code and sample videos for this chapter can be found in this book's
GitHub repository, https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-
Vision-with-Python-Third-Edition, in the chapter09 folder.

This chapter's code contains excerpts from an open source demo project
called Visualizing the Invisible, by Joseph Howse (one of this book's
authors). To learn more about this project, please visit its repository at
https://github.com/JoeHowse/VisualizingTheInvisible/.

Understanding 3D image tracking and
augmented reality
We have already solved problems involving image matching in Chapter 6, Retrieving
Images and Searching Using Image Descriptors. Moreover, we have solved problems involving
continuous tracking in Chapter 8, Tracking Objects. Therefore, we are familiar with many of
the components of an image tracking system, though we have not yet tackled any 3D
tracking problems.

So, what exactly is 3D tracking? Well, it is the process of continually updating an estimate
of an object's pose in a 3D space, typically, in terms of six variables: three variables to
represent the object's 3D translation (that is, position) and the other three variables to
represent its 3D rotation.

A more technical term for 3D tracking is 6DOF tracking – that is, tracking
with 6 degrees of freedom, meaning the 6 variables we just mentioned.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/


Camera Models and Augmented Reality Chapter 9

[ 246 ]

There are several different ways of representing the 3D rotation as three variables.
Elsewhere, you might have encountered various kinds of Euler angle representations,
which describe the 3D rotation in terms of three separate 2D rotations around the x, y, and z
axes in a particular order. OpenCV does not use Euler angles to represent 3D rotation;
instead, it uses a representation called the Rodrigues rotation vector. Specifically, OpenCV
uses the following six variables to represent the 6DOF pose:

tx: This is the object's translation along the x axis.1.
ty: This is the object's translation along the y axis.2.
tz: This is the object's translation along the z axis.3.
rx: This is the first element of the object's Rodrigues rotation vector.4.
ry: This is the second element of the object's Rodrigues rotation vector.5.
rz: This is the third element of the object's Rodrigues rotation vector.6.

Unfortunately, in the Rodrigues representation, there is no easy way to interpret rx, ry, and
rz separately from each other. Taken together, as the vector r, they encode both an axis of
rotation and an angle of rotation about this axis. Specifically, the following formulas define
the relationship among the r vector; an angle, θ; a normalized axis vector, r̂; and a 3 x 3
rotation matrix, R:

As OpenCV programmers, we are not obliged to compute or interpret any
of these variables directly. OpenCV provides functions that give us a
Rodrigues rotation vector as a return value, and we can pass this rotation
vector to other OpenCV functions as an argument – without ever needing
to manipulate its contents for ourselves.

For our purposes (and, indeed, for many problems in computer vision), the camera is the
origin of the 3D coordinate system. Therefore, in any given frame, the camera's current tx, ty,
tz, rx, ry, and rz values are all defined to be 0. We will endeavor to track other objects relative
to the camera's current pose.



Camera Models and Augmented Reality Chapter 9

[ 247 ]

Of course, for our edification, we will want to visualize the 3D tracking results. This brings
us into the territory of augmented reality (AR). Broadly speaking, AR is the process of
continually tracking relationships between real-world objects and applying these
relationships to virtual objects, in such a way that a user perceives the virtual objects as
being anchored to something in the real world. Typically, visual AR is based on
relationships in terms of 3D space and perspective projection. Indeed, our case is typical;
we want to visualize a 3D tracking result by drawing a projection of some 3D graphics atop
the object we tracked in the frame.

We will return to the concept of perspective projection in a few moments. Meanwhile, let's
take an overview of a typical set of steps involved in 3D image tracking and visual AR:

Define the parameters of the camera and lens. We will introduce this topic in this1.
chapter.
Initialize a Kalman filter that we will use to stabilize the 6DOF tracking results.2.
For more information about Kalman filtering, refer back to Chapter 8, Tracking
Objects.
Choose a reference image, representing the surface of the object we want to track.3.
For our demo, the object will be a plane, such as a piece of paper on which the
image is printed.
Create a list of 3D points, representing the vertices of the object. The coordinates4.
can be in any unit, such as meters, millimeters, or something arbitrary. For
example, you could arbitrarily define 1 unit to be equal to the object's height.
Extract feature descriptors from the reference image. For 3D tracking5.
applications, ORB is a popular choice of descriptor since it can be computed in
real time, even on modest hardware such as smartphones. Our demo will use
ORB. For more information about ORB, refer back to Chapter 6, Retrieving Images
and Searching Using Image Descriptors.
Convert the feature descriptors from pixel coordinates to 3D coordinates, using6.
the same mapping that we used in step 4.
Start capturing frames from the camera. For each frame, perform the following7.
steps:

Extract feature descriptors, and attempt to find good matches between1.
the reference image and the frame. Our demo will use FLANN-based
matching with a ratio test. For more information about these
approaches for matching descriptors, refer back to Chapter
6, Retrieving Images and Searching Using Image Descriptors.
If an insufficient number of good matches were found, continue to the2.
next frame. Otherwise, proceed with the remaining steps.



Camera Models and Augmented Reality Chapter 9

[ 248 ]

Attempt to find a good estimate of the tracked object's 6DOF3.
pose based on the camera and lens parameters, the matches, and the
3D model of the reference object. For this, we will use
the cv2.solvePnPRansac function.
Apply the Kalman filter to stabilize the 6DOF pose so that it does not4.
jitter too much from frame to frame.
Based on the camera and lens parameters, and the 6DOF tracking5.
results, draw a projection of some 3D graphics atop the tracked object
in the frame.

Before proceeding to our demo's code, let's discuss two aspects of this outline a bit further:
first, the parameters of the camera and lens; and second, the role of the mysterious function,
cv2.solvePnPRansac.

Understanding camera and lens parameters
Typically, when we capture an image, at least three objects are involved:

The subject is something we want to capture in the image. Typically, it is an
object that reflects light, and we want this object to appear in focus (sharp) in the
image.
The lens transmits light and focuses any reflected light from the focal plane onto
the image plane. The focal plane is a circular slice of space that includes the
subject (as defined previously). The image plane is a circular slice of space that
includes the image sensor (as defined later). Typically, these planes are
perpendicular to the lens's main (lengthwise) axis. The lens has an optical center,
which is the point where incoming light from the focal plane converges before
being projected back toward the image plane. The focal distance (that is, the
distance between the optical center and the focal plane) varies depending on the
distance between the optical center and the image plane. If we move the optical
center closer to the image plane, the focal distance increases; conversely, if we
move the optical center farther from the image plane, the focal distance decreases
(typically, in a camera system, the focus is adjusted by a mechanism that simply
moves the lens back and forth). The focal length is defined as the distance
between the optical center and the image plane when the focal distance is
infinity.



Camera Models and Augmented Reality Chapter 9

[ 249 ]

The image sensor is a photosensitive surface that receives light and records it as
an image, in either an analog medium (such as film) or a digital medium.
Typically, the image sensor is rectangular. Therefore, it does not cover the
corners of the circular image plane. The image's diagonal field of view (FOV: the
angular extent of the 3D space being imaged) bears a trigonometric relationship
to the focal length, the image sensor's width, and the image sensor's height. We
shall explore this relationship soon.

Here is a diagram to illustrate the preceding definitions:

For computer vision, we typically use a lens with a fixed focal length that
is optimal for a given application. However, a lens can have a variable
focal length; such a lens is called a zoom lens. Zooming in means
increasing the focal length, while zooming out means decreasing the focal
length. Mechanically, a zoom lens achieves this by moving the optical
elements inside the lens.



Camera Models and Augmented Reality Chapter 9

[ 250 ]

Let's use the variable f to represent the focal length, and the variables (cx, cy) to represent the
image sensor's center point within the image plane. OpenCV uses the following matrix,
which it calls a camera matrix, to represent the basic parameters of a camera and lens:

f 0 cx

0 f cy

0 0 1

Assuming that the image sensor is centered in the image plane (as it normally should be),
we can calculate cx and cy based on the image sensor's width, w, and height, h, as follows:

If we know the diagonal FOV, θ, we can calculate the focal length using the following
trigonometric formula:

Alternatively, if we do not know the diagonal FOV, but we know the horizontal FOV, ɸ,
and the vertical FOV, ψ, we can calculate the focal length as follows:

You might be wondering how we obtain values for any of these variables as starting points.
Sometimes, the manufacturer of a camera or lens provides data on the sensor size, focal
length, or FOV in the product's specification sheet. For example, the specification sheet
might list the sensor size and focal length in millimeters and the FOV in degrees. However,
if the specification sheet is not so informative, we have other ways of obtaining the
necessary data. Importantly, the sensor size and focal length do not need to be expressed in
real-world units such as millimeters. We can express them in arbitrary units, such as pixel-
equivalent units.



Camera Models and Augmented Reality Chapter 9

[ 251 ]

You may well ask, what is a pixel-equivalent unit? Well, when we capture a frame from a
camera, each pixel in the image corresponds to some region of the image sensor, and this
region has a real-world width (and a real-world height, which is normally the same as the
width). Therefore, if we are capturing frames with a resolution of 1280 x 720, we can say
that the image sensor's width, w, is 1280 pixel-equivalent units and its height, h, is 720 pixel-
equivalent units. These units are not comparable across different real-world sensor sizes or
different resolutions; however, for a given camera and resolution, they allow us to make
internally consistent measurements without needing to know the real-world scale of these
measurements.

This trick gets us as far as being able to define w and h for any image sensor (since we can
always check the pixel dimensions of a captured frame). Now, to be able to calculate the
focal length, we just need one more type of data: the FOV. We can measure this using a
simple experiment. Take a piece of paper and tape it to a wall (or another vertical surface).
Position the camera and lens so that they are directly facing the piece of paper and the
paper fills the frame diagonally. (If the paper's aspect ratio does not match the frame's
aspect ratio, cut the paper to match.) Measure the diagonal size, s, from one corner of the
paper to the diagonally opposite corner. Additionally, measure the distance, d, from the
paper to a point halfway down the barrel of the lens. Then, calculate the diagonal
FOV, θ, by trigonometry:

Let's suppose that with this experiment, we determine that a given camera and lens have a
diagonal FOV of 70 degrees. If we know that we are capturing frames at a resolution of
1280 x 720, then we can calculate the focal length in pixel-equivalent units as follows:

In addition to this, we can calculate the image sensor's center coordinates:

Therefore, we have the following camera matrix:

1048.7 0 640
0 1048.7 360
0 0 1



Camera Models and Augmented Reality Chapter 9

[ 252 ]

The preceding parameters are necessary for 3D tracking, and they correctly represent an
ideal camera and lens. However, real equipment may deviate noticeably from this ideal,
and the camera matrix alone cannot represent all the possible types of
deviations. Distortion coefficients are a set of additional parameters that can represent the 
following kinds of deviations from the ideal model:

Radial distortion: This means that the lens does not magnify all parts of the
image equally; thus, it makes straight edges appear curvy or wavy. For radial
distortion coefficients, variable names such as kn (for example, k1, k2, k3, and so
forth) are typically used. If k1<0, this usually implies that the lens suffers
from barrel distortion, meaning that straight edges appear to bend outward
toward the borders of the image. Conversely, k1>0 usually implies that the lens
suffers from pincushion distortion, meaning that straight edges appear to bend
inward toward the center of the image. If the sign alternates across the series (for
example, k1>0, k2<0, and k3>0), this might imply that the lens suffers
from mustache distortion, meaning that straight edges appear wavy.
Tangential distortion: This means that the lens's main (lengthwise) axis is not
perpendicular to the image sensor; thus, the perspective is skewed, and the
angles between the straight edges appear to be different than in a normal
perspective projection. For tangential distortion coefficients, variable names such
as pn (for example, p1, p2, and so forth) are typically used. The sign of the
coefficient depends on the direction of the lens's tilt relative to the image sensor.

The following diagram illustrates some types of radial distortion:



Camera Models and Augmented Reality Chapter 9

[ 253 ]

OpenCV provides functions to work with as many as five distortion coefficients: k1, k2, p1, p2,
and k3. (OpenCV expects them in this order, as elements of an array.) Rarely, you might be
able to obtain official data about distortion coefficients from the vendor of a camera or lens.
Alternatively, you can estimate the distortion coefficients, along with the camera matrix,
using OpenCV's chessboard calibration process. This involves capturing a series of images
of a printed a chessboard pattern, viewed from various positions and angles. For further
details, you can refer to the official tutorial at https://docs.opencv.org/master/dc/dbb/
tutorial_py_calibration.html.

For our demo's purposes, we will simply assume that all the distortion coefficients are 0,
meaning there is no distortion. Of course, we do not really believe that our webcam lenses
are distortion-less masterpieces of optical engineering; we just believe that the distortion is
not bad enough to noticeably affect our demo of 3D tracking and AR. If we were trying to
build a precise measurement device instead of a visual demo, we would be more concerned
about the effects of distortion.

Compared to the chessboard calibration process, the formulas and
assumptions that we have outlined in this section produce a more
constrained or idealistic model. However, our approach has the
advantages of being simpler and more easily reproducible. The
chessboard calibration process is more laborious, and each user might
execute it differently, producing different (and, sometimes, erroneous)
results.

Having absorbed this background information on camera and lens parameters, let's now
examine an OpenCV function that uses these parameters as part of a solution to the 6DOF
tracking problem.

Understanding cv2.solvePnPRansac
The cv2.solvePnPRansac function implements a solver for the so-called Perspective-n-
Point (PnP) problem. Given a set of n unique matches between 3D and 2D points, along
with the parameters of the camera and lens that generated this 2D projection of the 3D
points, the solver attempts to estimate the 6DOF pose of the 3D object relative to the
camera. This problem is somewhat similar to finding the homography for a set of 2D-to-2D
keypoint matches, as we did in Chapter 6, Retrieving Images and Searching Using Image
Descriptors. However, in the PnP problem, we have enough additional information to
estimate a more specific spatial relationship – the DOF pose – as opposed to the
homography, which just tells us a projective relationship.

https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html


Camera Models and Augmented Reality Chapter 9

[ 254 ]

So, how does cv2.solvePnPRansac work? As the function's name suggests, it implements
a Ransac algorithm, which is a general-purpose iterative approach designed to deal with a
set of inputs that may contain outliers – in our case, bad matches. Each Ransac iteration
finds a potential solution that minimizes a measurement of mean error for the inputs. Then,
before the next iteration, any inputs with an unacceptably large error are marked as outliers
and discarded. This process continues until the solution converges, meaning that no new
outliers are found and the mean error is acceptably low.

For the PnP problem, the error is measured in terms of reprojection error, meaning the
distance between the observed position of a 2D point and the predicted position according
to the camera and lens parameters, and the 6DOF pose that we are currently considering as
the potential solution. At the end of the process, we hope to obtain a 6DOF pose that is
consistent with most of the 3D-to-2D keypoint matches. Additionally, we want to know
which of the matches are inliers for this solution.

Let's consider the function signature of cv2.solvePnPRansac:

retval, rvec, tvec, inliers = cv.solvePnPRansac(
    objectPoints,
    imagePoints,
    cameraMatrix,
    distCoeffs,
    rvec=None,
    tvec=None,
    useExtrinsicGuess=False
    iterationsCount=100,
    reprojectionError=8.0,
    confidence=0.98,
    inliers=None,
    flags=cv2.SOLVEPNP_ITERATIVE)

As we can see, the function has four return values:

retval: This is True if the solver converged on a solution; otherwise, it is False.
rvec: This array contains rx, ry, and rz – the three rotational degrees of freedom in
the 6DOF pose.
tvec: This array contains tx, ty, and tz – the three translational (positional) degrees
of freedom in the 6DOF pose.
inliers: If the solver converged on a solution, this vector contains the indices of
the input points (in objectPoints and imagePoints) that are congruous with
the solution.



Camera Models and Augmented Reality Chapter 9

[ 255 ]

The function also has 12 arguments:

objectPoints: This is an array of 3D points that represent the object's keypoints
when there is no translation and no rotation – in other words, when the 6DOF
pose variables are all 0.
imagePoints: This is an array of 2D points that represent the object's keypoint
matches in the image. Specifically, imagePoints[i] is believed to be a match for
objectPoints[i].
cameraMatrix: This 2D array is the camera matrix, which we can derive in the
manner described in the previous Understanding camera and lens
parameters section. 
distCoeffs: This is the array of distortion coefficients. If we do not know them,
we can assume (for simplicity) that they are all 0, as mentioned in the previous
section.
rvec: If the solver converges on a solution, it will put the solution's rx, ry, and
rz values in this array.
tvec: If the solver converges on a solution, it will put the solution's tx, ty,
and tz values in this array.
useExtrinsicGuess: If this is True, the solver treats the values in the rvec
and tvec arguments as an initial guess, and then it tries to find a solution that is
close to these. Otherwise, the solver takes an unbiased approach in its search for
a solution.
iterationsCount: This is the maximum number of iterations that the solver
should attempt. If it does not converge on a solution after this number of
iterations, it gives up.
reprojectionError: This is the maximum reprojection error that the solver
will accept; if a point has a greater reprojection error than this, the solver treats it
as an outlier.
confidence: The solver attempts to converge on a solution that has a confidence
score greater than or equal to this value.
inliers: If the solver converges on a solution, it will put the indices of the
solution's inlier points in this array.
flags: The flags specify the solver's algorithm. The default,
cv2.SOLVEPNP_ITERATIVE, is an approach that minimizes reprojection error
and has no special restrictions, so it is generally the best choice. A useful
alternative is cv2.SOLVEPNP_IPPE (IPPE, short for Infinitesimal Plane-Based
Pose Estimation), but it is restricted to planar objects.



Camera Models and Augmented Reality Chapter 9

[ 256 ]

Although this function involves a lot of variables, we will see that its usage is a natural
extension of the keypoint matching problems we have covered in Chapter 6, Retrieving
Images and Searching Using Image Descriptors, and the 3D and projective problems we are
introducing in this chapter. With this in mind, let's begin to explore this chapter's sample
code.

Implementing the demo application
We are going to implement our demo in a single script, ImageTrackingDemo.py, which
will contain the following components:

Import statements1.
A helper function for a custom grayscale conversion2.
Helper functions to convert keypoints from 2D to 3D space3.
An application class, ImageTrackingDemo, which will encapsulate a model of4.
the camera and lens, a model of the reference image, a Kalman filter, 6DOF
tracking results, and an application loop that will track the image and draw a
simple AR visualization
A main function to launch the application5.

The script will depend on one other file, reference_image.png, which will represent the
image that we want to track.

Without further ado, let's dive into the script's implementation.

Importing modules
From the Python standard library, we will use the math module for trigonometric
calculations, and the timeit module for accurate time measurement (which will enable us
to use a Kalman filter more effectively). As usual, we will also use NumPy and OpenCV.
Thus, our implementation of ImageTrackingDemo.py begins with the following import
statements:

import math
import timeit

import cv2
import numpy

Now, let's proceed to the implementation of the helper functions.



Camera Models and Augmented Reality Chapter 9

[ 257 ]

Performing grayscale conversion
Throughout this book, we have performed grayscale conversions using code such as the
following:

gray_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2GRAY)

Perhaps a question is long overdue: how exactly does this function map BGR values to
grayscale values? The answer is that each output pixel's grayscale value is a weighted
average of the corresponding input pixel's B, G, and R values, as follows:

gray = (0.114 * blue) + (0.587 * green) + (0.299 * red)

These weights are widely used. They come from a telecommunications industry standard
called CCIR 601, which was issued in 1982. They are loosely consistent with a characteristic
of human vision; when we see a brightly lit scene, our eyes are most sensitive to yellowish-
green light. Moreover, these weights should produce high contrast in scenes with yellowish
light and blueish shadows, such as an outdoor scene on a sunny day. Are these good
reasons for us to use the CCIR 601 weights? No, they are not; there is no scientific evidence
that the CCIR 601 conversion weights yield optimal grayscale input for any particular
purpose in computer vision.

Indeed, for the purpose of image tracking, there is evidence in favor of other grayscale
conversion algorithms. Samuel Macêdo, Givânio Melo, and Judith Kelner address this topic
in their paper, A comparative study of grayscale conversion techniques applied to SIFT
descriptors (SBC Journal on Interactive Systems, vol. 6, no. 2, 2015). They test a variety of
conversion algorithms, including the following types:

A weighted-average conversion, gray = (0.07 * blue) + (0.71 * green)
+ (0.21 * red), which is somewhat similar to CCIR 601
An unweighted-average conversion, gray = (blue + green + red) / 3
Conversions based on only a single color channel, such as gray = green
Gamma-corrected conversions, such as gray = 255 * (green / 255) ^
(1/2.2), in which the grayscale value varies exponentially (not linearly) with
the inputs

According to the paper, the weighted-average conversion produces results that are
relatively unstable – good for finding matches and homography with some images, but bad
with others. The unweighted-average conversion and the single-channel conversions yield
more consistent results. For some images, the gamma-corrected conversions yield the best
results, but these conversions are computationally more expensive.



Camera Models and Augmented Reality Chapter 9

[ 258 ]

For our demo's purposes, we will perform grayscale conversion by taking the simple
(unweighted) average of each pixel's B, G, and R values. This approach is computationally
cheap (which is desirable in real-time tracking), and we expect that it leads to more
consistent tracking results than the default weighted-average conversion in OpenCV. Here
is our implementation of a helper function to perform the custom conversion:

def convert_to_gray(src, dst=None):
    weight = 1.0 / 3.0
    m = numpy.array([[weight, weight, weight]], numpy.float32)
    return cv2.transform(src, m, dst)

Note the use of the cv2.transform function. This is a well-optimized, general-purpose
matrix transformation function, provided by OpenCV. We can use it to perform operations
where the values of a pixel's output channels are a linear combination of the values of the
input channels. In the case of our BGR-to-grayscale conversion, we have one output
channel and three input channels, so our transformation matrix, m, has one row and three
columns.

Having written our helper function for grayscale conversions, let's go on to consider helper
functions for conversions from 2D to 3D space.

Performing 2D-to-3D spatial conversions
Remember that we have a reference image, reference_image.png, and we want our AR
application to track a print copy of this image. For the purpose of 3D tracking, we can
represent this printed image as a plane in 3D space. Let's define the local coordinate system
by saying that, normally (when the elements of the 6DOF pose are all 0), this planar object
stands upright like a picture hanging on a wall; its front is the side with the image on it, and
its origin is the center of the image.

Now, let's suppose that we want to map a given pixel from the reference image onto this 3D
plane. Given the 2D pixel coordinates, the image's pixel dimensions, and a scaling factor to
convert from pixels to some unit of measurement we want to use in 3D space, we can use
the following helper function to map a pixel onto the plane:

def map_point_onto_plane(point_2D, image_size, image_scale):
    x, y = point_2D
    w, h = image_size
    return (image_scale * (x - 0.5 * w),
            image_scale * (y - 0.5 * h),
            0.0)



Camera Models and Augmented Reality Chapter 9

[ 259 ]

The scaling factor depends on the real-world size of the printed image and our choice of
unit. For example, we might know that our printed image is 20 cm tall – or we might not
care about the absolute scale, in which case we could define an arbitrary unit such that the
printed image is one unit tall. Anyway, given a list of 2D pixel coordinates, the reference
image's size, and the reference image's real-world height in any unit (absolute or relative),
we can use the following helper function to obtain a list of the corresponding 3D
coordinates on the plane:

def map_points_to_plane(points_2D, image_size, image_real_height):

    w, h = image_size
    image_scale = image_real_height / h

    points_3D = [map_point_onto_plane(
                     point_2D, image_size, image_scale)
                 for point_2D in points_2D]
    return numpy.array(points_3D, numpy.float32)

Note that we have a helper function for multiple points, map_points_to_plane, and it
calls a helper function for every single point, map_point_to_plane.

Later, in the Initializing the tracker section, we will generate ORB keypoint descriptors for
the reference image, and we will use our map_points_to_plane helper function in order
to convert the keypoint coordinates from 2D to 3D. We will also convert the image's four
2D vertices (that is, its top-left, top-right, bottom-right, and bottom-left corners) to obtain
the four 3D vertices of the plane. We will use these vertices when we perform our AR
drawing – specifically, in the Drawing the tracking results section. Drawing-related functions
(in OpenCV and many other frameworks) expect the vertices to be specified in clockwise
order (from a frontal perspective) for each face of the 3D shape. To deal with this
requirement, let's implement another helper function that is specific to mapping vertices;
here it is:

def map_vertices_to_plane(image_size, image_real_height):

    w, h = image_size

    vertices_2D = [(0, 0), (w, 0), (w, h), (0, h)]
    vertex_indices_by_face = [[0, 1, 2, 3]]

    vertices_3D = map_points_to_plane(
        vertices_2D, image_size, image_real_height)
    return vertices_3D, vertex_indices_by_face



Camera Models and Augmented Reality Chapter 9

[ 260 ]

Note that our vertex-mapping helper function, map_vertices_to_plane, calls our
map_points_to_plane helper function, which, in turn, calls map_point_to_plane.
Therefore, all our mapping functionality shares a common core.

Of course, 2D-to-3D keypoint mapping and vertex mapping can be
applied to other kinds of 3D shapes besides planes. To learn how our
approach can extend to 3D cuboids and 3D cylinders, please refer to the
Visualizing the Invisible demo project, by Joseph Howse, which is available
at https://github.com/JoeHowse/VisualizingTheInvisible/.

We have finished implementing the helper functions. Now, let's proceed to the object-
oriented part of the code.

Implementing the application class
We will implement our application in a class named ImageTrackingDemo, which will have
the following methods:

__init__(self, capture, diagonal_fov_degrees, target_fps,

reference_image_path, reference_image_real_height): The initializer
will set up a capture device, a camera matrix, a Kalman filter, and 2D and 3D
keypoints for the reference image.
run(self): This method will run the application's main loop, which captures,
processes, and displays frames until the user quits by hitting the Esc key. The
processing of each frame is performed with the help of other methods, which are
mentioned next in this list.
_track_object(self): This method will perform 6DOF tracking and draw an
AR visualization of the tracking result.
_init_kalman_transition_matrix(self, fps): This method will configure
the Kalman filter to ensure that acceleration and velocity are simulated properly
for the specified frame rate.
_apply_kalman(self): This method will stabilize the 6DOF tracking result by
applying the Kalman filter.

Let's walk through the methods' implementations one by one, starting with __init__. 

https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/
https://github.com/JoeHowse/VisualizingTheInvisible/


Camera Models and Augmented Reality Chapter 9

[ 261 ]

Initializing the tracker
The __init__ method involves a lot of steps to initialize the camera matrix, the ORB
descriptor extractor, the Kalman filter, the reference image's 2D and 3D keypoints, and
other variables related to our tracking algorithm:

To begin, let's look at the arguments that __init__ accepts. These include1.
a cv2.VideoCapture object, called capture (the camera); the camera's diagonal
FOV, in degrees; the expected frame rate in frames per second (FPS); a path to a
file containing the reference image; and a measurement of the reference image's
real-world height (in any unit):

class ImageTrackingDemo():

    def __init__(self, capture, diagonal_fov_degrees=70.0,
                 target_fps=25.0,
                 reference_image_path='reference_image.png',
                 reference_image_real_height=1.0):

We attempt to capture a frame from the camera in order to determine its pixel2.
dimensions; failing that, we get the dimensions from the camera's properties:

        self._capture = capture
        success, trial_image = capture.read()
        if success:
            # Use the actual image dimensions.
            h, w = trial_image.shape[:2]
        else:
            # Use the nominal image dimensions.
            w = capture.get(cv2.CAP_PROP_FRAME_WIDTH)
            h = capture.get(cv2.CAP_PROP_FRAME_HEIGHT)
        self._image_size = (w, h)

Now, given the frame's dimensions in pixels, and the FOV of the camera and3.
lens, we can use trigonometry to calculate the focal length in pixel-equivalent
units. (The formula is the one we derived earlier in this chapter, in
the Understanding camera and lens parameters section.) Moreover, using the focal
length and the frame's center point, we can construct the camera matrix. Here is
the relevant code:

        diagonal_image_size = (w ** 2.0 + h ** 2.0) ** 0.5
        diagonal_fov_radians = \
            diagonal_fov_degrees * math.pi / 180.0
        focal_length = 0.5 * diagonal_image_size / math.tan(
            0.5 * diagonal_fov_radians)



Camera Models and Augmented Reality Chapter 9

[ 262 ]

        self._camera_matrix = numpy.array(
            [[focal_length, 0.0, 0.5 * w],
             [0.0, focal_length, 0.5 * h],
             [0.0, 0.0, 1.0]], numpy.float32)

For the sake of simplicity, we assume that the lens does not suffer from any4.
distortion whatsoever:

        self._distortion_coefficients = None

Initially, we are not tracking the object, so we have no estimate of its rotation and5.
position; we just define the relevant variables as None:

        self._rotation_vector = None
        self._translation_vector = None

Now, let's set up a Kalman filter:6.

        self._kalman = cv2.KalmanFilter(18, 6)

        self._kalman.processNoiseCov = numpy.identity(
            18, numpy.float32) * 1e-5
        self._kalman.measurementNoiseCov = numpy.identity(
            6, numpy.float32) * 1e-2
        self._kalman.errorCovPost = numpy.identity(
            18, numpy.float32)

        self._kalman.measurementMatrix = numpy.array(
            [[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],
            numpy.float32)

        self._init_kalman_transition_matrix(target_fps)



Camera Models and Augmented Reality Chapter 9

[ 263 ]

As indicated by the preceding code, cv2.KalmanFilter(18, 6), this Kalman filter will
track 18 output variables (or predictions), based on 6 input variables (or measurements).
Specifically, the input variables are the elements of the 6DOF tracking result: tx, ty, tz, rx, ry,
and rz. The output variables are the elements of the stabilized 6DOF tracking result, plus
their first-order derivatives (velocity) and their second-order derivatives (acceleration), in
the following order: tx, ty, tz, tx', ty', tz', tx'', ty'', tz'', rx, ry, rz, rx', ry', rz', rx'', ry'', and rz''. The
Kalman filter's measurement matrix has 18 columns (representing the output variables) and
6 rows (representing the input variables). Within each row, we put 1.0 in the index that
corresponds to the matching output variable; elsewhere, we put 0.0. We also initialize a
transition matrix, which defines the relationships among the output variables over time.
This part of the initialization is handled by a helper method,
_init_kalman_transition_matrix(target_fps), which we will examine later, in
the Initializing and applying the Kalman filter section.

Not all of the Kalman filter's matrices are initialized by our __init__
method. The transition matrix is updated every frame during tracking
because the actual frame rate (and, thus, the time step) may change. The
state matrices are initialized every time we start tracking an object. We
will cover these aspects of the Kalman filter's usage in due course, in the
Initializing and applying the Kalman filter section.

We need a Boolean variable (initially, False) to indicate whether we successfully7.
tracked the object in the previous frame:

        self._was_tracking = False

We need to define the vertices of some 3D graphics that we will draw every8.
frame as part of our AR visualization. Specifically, the graphics will be a set of
arrows representing the object's X, Y, and Z axes. The scale of these graphics will
relate to the scale of the real object – that is, the printed image that we intend to
track. Remember that, as one of its arguments, the __init__ method takes the
image's scale – specifically, its height – and that this measurement may be in any
unit. Let's define the length of the 3D axis arrows to be half the height of the
printed image:

        self._reference_image_real_height = \
            reference_image_real_height
        reference_axis_length = 0.5 * reference_image_real_height



Camera Models and Augmented Reality Chapter 9

[ 264 ]

Using the length that we have just defined, let's define the vertices of the axis9.
arrows relative to the printed image's center, [0.0, 0.0, 0.0]:

        self._reference_axis_points_3D = numpy.array(
            [[0.0, 0.0, 0.0],
             [-reference_axis_length, 0.0, 0.0],
             [0.0, -reference_axis_length, 0.0],
             [0.0, 0.0, -reference_axis_length]], numpy.float32)

Note that OpenCV's coordinate system has nonstandard axis directions, as follows:

+X (the positive X direction) is the object's left-hand direction, or the viewer's
right-hand direction in a frontal view of the object.
+Y is down.
+Z is the object's backward direction, or the viewer's frontward direction in a
frontal view of the object.

We must negate all of the preceding directions in order to obtain the following standard
right-handed coordinate system, like the one used in many 3D graphics frameworks such
as OpenGL:

+X is the object's right-hand direction, or the viewer's left-hand direction in a
frontal view of the object.
+Y is up.
+Z is the object's forward direction, or the viewer's backward direction in a
frontal view of the object.

For the purposes of this book, we use OpenCV to draw 3D graphics, so we
could simply adhere to OpenCV's nonstandard axis directions, even when
we draw visualizations. However, if you do further AR work in the
future, you will likely need to integrate your computer vision code with
OpenGL and other 3D graphics frameworks using a right-handed
coordinate system. To better prepare you for this eventuality, we will
convert the axis directions in our OpenCV-centric demo.

We will use three arrays to hold three kinds of images: the BGR video frame10.
(where we will do our AR drawing), the grayscale version of the frame (which
we will use for keypoint matching), and the mask (where we will draw a
silhouette of the tracked object). Initially, these arrays are all None:

        self._bgr_image = None
        self._gray_image = None
        self._mask = None



Camera Models and Augmented Reality Chapter 9

[ 265 ]

We will use a cv2.ORB object to detect keypoints and compute descriptors for11.
the reference image and, later, for camera frames. We initialize the cv2.ORB
object as follows:

        # Create and configure the feature detector.
        patchSize = 31
        self._feature_detector = cv2.ORB_create(
            nfeatures=250, scaleFactor=1.2, nlevels=16,
            edgeThreshold=patchSize, patchSize=patchSize)

For a refresher on the ORB algorithm and its usage in OpenCV, refer back
to Chapter 6, Retrieving Images and Searching Using Image Descriptors,
specifically to the Using ORB with FAST features and BRIEF descriptors
section.

Here, we have specified several optional parameters for the constructor of
cv2.ORB. The diameter covered by a descriptor is 31 pixels, our image pyramid
has 16 levels with a scale factor of 1.2 between consecutive levels, and we want, at
most, 250 keypoints and descriptors per detection attempt.

Now, we load the reference image from a file, resize it, convert it to grayscale,12.
and create an empty mask for it:

        bgr_reference_image = cv2.imread(
            reference_image_path, cv2.IMREAD_COLOR)
        reference_image_h, reference_image_w = \
            bgr_reference_image.shape[:2]
        reference_image_resize_factor = \
            (2.0 * h) / reference_image_h
        bgr_reference_image = cv2.resize(
            bgr_reference_image, (0, 0), None,
            reference_image_resize_factor,
            reference_image_resize_factor, cv2.INTER_CUBIC)
        gray_reference_image = convert_to_gray(bgr_reference_image)
        reference_mask = numpy.empty_like(gray_reference_image)



Camera Models and Augmented Reality Chapter 9

[ 266 ]

When resizing the reference image, we have chosen to make it twice as high as
the camera frame. The exact number is arbitrary; however, the idea is that we
want to perform keypoint detection and description with an image pyramid that
covers a useful range of magnifications. The base of the pyramid (that is, the
resized reference image) should be larger than the camera frame so that we can
match keypoints at an appropriate scale even when the target object is so close to
the camera that it cannot all fit into the frame. Conversely, the top level of the
pyramid should be smaller than the camera frame so that we can match keypoints
at an appropriate scale even when the target object is too far away to fill the
whole frame.

Let's consider an example. Suppose that our original reference image is 4000 x
3000 pixels and that our camera frame is 1280 x 720 pixels. We resize the reference
image to 1920 x 1440 pixels (twice the height of the frame, and the same aspect
ratio as the original reference image). Thus, the base of our image pyramid is also
1920 x 1440 pixels. Since our cv2.ORB object is configured to use 16 pyramid
levels and a scale factor of 1.2, the top of the image pyramid has a width
of 1920/(1.216-1)=124 pixels and a height of 1440/(1.216-1)=93 pixels; in other words, it
is 124 x 93 pixels. Therefore, we can potentially match keypoints and track the
object even if it is so far away that it fills just 10% of the frame's width or height.
Realistically, to perform useful keypoint matching at this scale, we would need a
good lens, the object would need to be in focus, and the lighting would need to be
good as well.

At this stage, we have an appropriately sized reference image in BGR color and13.
in grayscale, and we have an empty mask for this image. We are going to
partition the image into 36 equally-sized regions of interest (in a 6 x 6 grid), and
for each region, we will attempt to generate as many as 250 keypoints and
descriptors (since our cv2.ORB object is configured to use this maximum number
of keypoints and descriptors). This partitioning scheme helps to ensure that we
have some keypoints and descriptors in every region, so we can potentially
match keypoints and track the object even if most parts of the object are not
visible in a given frame. The following code block shows how we iterate over the
regions of interest and, for each region, create a mask, perform keypoint
detection and descriptor extraction, and append the keypoints and descriptors to
master lists:

        # Find keypoints and descriptors for multiple segments of
        # the reference image.
        reference_keypoints = []
        self._reference_descriptors = numpy.empty(
            (0, 32), numpy.uint8)
        num_segments_y = 6



Camera Models and Augmented Reality Chapter 9

[ 267 ]

        num_segments_x = 6
        for segment_y, segment_x in numpy.ndindex(
                (num_segments_y, num_segments_x)):
            y0 = reference_image_h * \
                segment_y // num_segments_y - patchSize
            x0 = reference_image_w * \
                segment_x // num_segments_x - patchSize
            y1 = reference_image_h * \
                (segment_y + 1) // num_segments_y + patchSize
            x1 = reference_image_w * \
                (segment_x + 1) // num_segments_x + patchSize
            reference_mask.fill(0)
            cv2.rectangle(
                reference_mask, (x0, y0), (x1, y1), 255, cv2.FILLED)
            more_reference_keypoints, more_reference_descriptors = \
                self._feature_detector.detectAndCompute(
                    gray_reference_image, reference_mask)
            if more_reference_descriptors is None:
                # No keypoints were found for this segment.
                continue
            reference_keypoints += more_reference_keypoints
            self._reference_descriptors = numpy.vstack(
                (self._reference_descriptors,
                 more_reference_descriptors))

Now, we draw a visualization of the keypoints atop the grayscale reference14.
image:

        cv2.drawKeypoints(
            gray_reference_image, reference_keypoints,
            bgr_reference_image,
            flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

Next, we save the visualization to a file with _keypoints appended to the name.15.
For example, if the filename of the reference image was reference_image.png,
we save the visualization as reference_image_keypoints.png. Here is the
relevant code:

        ext_i = reference_image_path.rfind('.')
        reference_image_keypoints_path = \
            reference_image_path[:ext_i] + '_keypoints' + \
            reference_image_path[ext_i:]
        cv2.imwrite(
            reference_image_keypoints_path, bgr_reference_image)



Camera Models and Augmented Reality Chapter 9

[ 268 ]

We proceed to initialize the FLANN-based matcher with custom parameters:16.

        FLANN_INDEX_LSH = 6
        index_params = dict(algorithm=FLANN_INDEX_LSH,
                            table_number=6, key_size=12,
                            multi_probe_level=1)
        search_params = dict()
        self._descriptor_matcher = cv2.FlannBasedMatcher(
            index_params, search_params)

These parameters specify that we are using a multi-probe LSH (locality-sensitive
hashing) indexing algorithm with 6 hash tables, a hash key size of 12 bits, and 1
multi-probe level.

For a description of the multi-probe LSH algorithm, refer to the
paper Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity
Search (VLDB, 2007), by Qin Lv, William Josephson, Zhe Wang, Moses
Charikar, and Kai Li. An electronic version is available at https://www.
cs.princeton.edu/cass/papers/mplsh_vldb07.pdf.

We train the matcher by feeding the reference descriptors to it:17.

        self._descriptor_matcher.add([self._reference_descriptors])

We take the 2D coordinates of the keypoints, and we feed these to our18.
map_points_to_plane helper function in order to obtain equivalent 3D
coordinates on the surface of the object's plane:

        reference_points_2D = [keypoint.pt
                               for keypoint in reference_keypoints]
        self._reference_points_3D = map_points_to_plane(
            reference_points_2D, gray_reference_image.shape[::-1],
            reference_image_real_height)

Similarly, we call our map_vertices_to_plane function in order to obtain the19.
3D vertices and 3D face of the plane:

        (self._reference_vertices_3D,
         self._reference_vertex_indices_by_face) = \
            map_vertices_to_plane(
                    gray_reference_image.shape[::-1],
                    reference_image_real_height)

https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf
https://www.cs.princeton.edu/cass/papers/mplsh_vldb07.pdf


Camera Models and Augmented Reality Chapter 9

[ 269 ]

This concludes the implementation of the __init__ method. Next, let's take a look at the
run method, which represents the application's main loop.

Implementing the main loop
As usual, our main loop's primary role is to capture and process frames, until the user hits
the Esc key. The processing of each frame – including 3D tracking and AR drawing – is
delegated to a helper method called _track_object, which we will examine later, in the
Tracking the image in 3D section. The main loop also has a secondary role: that is, to perform
timekeeping by measuring the frame rate and updating the Kalman filter's transition matrix
accordingly. This update is delegated to another helper method,
_init_kalman_transition_matrix, which we will examine in the Initializing and
applying the Kalman filter section. With these roles in mind, we can implement the main loop
in the run method as follows:

    def run(self):

        num_images_captured = 0
        start_time = timeit.default_timer()

        while cv2.waitKey(1) != 27:  # Escape
            success, self._bgr_image = self._capture.read(
                self._bgr_image)
            if success:
                num_images_captured += 1
                self._track_object()
                cv2.imshow('Image Tracking', self._bgr_image)
            delta_time = timeit.default_timer() - start_time
            if delta_time > 0.0:
                fps = num_images_captured / delta_time
                self._init_kalman_transition_matrix(fps)

Note the use of the timeit.default_timer function from Python's standard library. This
function provides a precise measurement of the current system time in seconds (as a
floating-point number, so fractions of seconds can be expressed). As the name timeit
suggests, this module contains useful functionality for situations where you have time-
sensitive code and you want to time it.

Let's move on to the implementation of _track_object, since this helper performs the
largest part of the application's work on behalf of run.



Camera Models and Augmented Reality Chapter 9

[ 270 ]

Tracking the image in 3D
The _track_object method is directly responsible for keypoint matching, keypoint
visualizations, and solving the PnP problem. Additionally, it calls other methods to deal
with Kalman filtering, AR drawing, and masking the tracked object:

To begin _track_object's implementation, we call our convert_to_gray1.
helper function to convert the frame to grayscale:

    def _track_object(self):

        self._gray_image = convert_to_gray(
            self._bgr_image, self._gray_image)

Now, we use our cv2.ORB object to detect keypoints and compute descriptors in2.
a masked region of the grayscale image:

        if self._mask is None:
            self._mask = numpy.full_like(self._gray_image, 255)

        keypoints, descriptors = \
            self._feature_detector.detectAndCompute(
                self._gray_image, self._mask)

If we were already tracking the object in the previous frame, the mask covers the
region where we previously found the object. Otherwise, the mask covers the
whole frame because we have no idea where the object might be. We will see how
the mask is created later, in the Drawing the tracking results and masking the tracked
object section.

Next, we use our FLANN matcher to find matches between the reference image's3.
keypoints and the frame's keypoints, and we filter these matches according to the
ratio test:

        # Find the 2 best matches for each descriptor.
        matches = self._descriptor_matcher.knnMatch(descriptors, 2)

        # Filter the matches based on the distance ratio test.
        good_matches = [
            match[0] for match in matches
            if len(match) > 1 and \
            match[0].distance < 0.6 * match[1].distance
        ]



Camera Models and Augmented Reality Chapter 9

[ 271 ]

For details about FLANN matching and the ratio test, refer back
to Chapter 6, Retrieving Images and Searching Using Image Descriptors.

At this stage, we have a list of good matches that passed the ratio test. Let's select4.
the subset of the frame's keypoints that correspond to these good matches, and
let's draw red circles on the frame to visualize these keypoints:

        # Select the good keypoints and draw them in red.
        good_keypoints = [keypoints[match.queryIdx]
                          for match in good_matches]
        cv2.drawKeypoints(self._gray_image, good_keypoints,
                          self._bgr_image, (0, 0, 255))

Having found the good matches, we obviously know how many of them there5.
are. If the count is small, then, overall, the set of matches can be considered
doubtful and inadequate for tracking. We define two different thresholds for the
minimum number of good matches: a higher threshold if we are just starting
tracking (that is, we were not tracking the object in the previous frame), and a
lower threshold if we are continuing tracking (after already tracking the object in
the previous frame):

        min_good_matches_to_start_tracking = 8
        min_good_matches_to_continue_tracking = 6
        num_good_matches = len(good_matches)

If we fail to meet even the lower threshold, then we note that we did not track the5.
object in this frame, and we reset the mask so that it covers the whole frame:

        if num_good_matches < min_good_matches_to_continue_tracking:
            self._was_tracking = False
            self._mask.fill(255)

On the other hand, if we have enough matches to satisfy the applicable threshold,6.
we proceed to try to track the object. The first step in this is to select the good
matches' 2D coordinates in the frame and their 3D coordinates in the model of
the reference object:

        elif num_good_matches >= \
                min_good_matches_to_start_tracking or \
                    self._was_tracking:

            # Select the 2D coordinates of the good matches.
            # They must be in an array of shape (N, 1, 2).
            good_points_2D = numpy.array(



Camera Models and Augmented Reality Chapter 9

[ 272 ]

                [[keypoint.pt] for keypoint in good_keypoints],
                numpy.float32)

            # Select the 3D coordinates of the good matches.
            # They must be in an array of shape (N, 1, 3).
            good_points_3D = numpy.array(
                [[self._reference_points_3D[match.trainIdx]]
                 for match in good_matches],
                numpy.float32)

Now, we are ready to call cv2.solvePnPRansac using the kinds of arguments7.
we described near the start of this chapter, in the Understanding
cv2.solvePnPRansac section. Notably, we use the 3D reference keypoints and
the 2D scene keypoints from only the good matches:

            # Solve for the pose and find the inlier indices.
            (success, self._rotation_vector,
             self._translation_vector, inlier_indices) = \
                cv2.solvePnPRansac(good_points_3D, good_points_2D,
                                   self._camera_matrix,
                                   self._distortion_coefficients,
                                   self._rotation_vector,
                                   self._translation_vector,
                                   useExtrinsicGuess=False,
                                   iterationsCount=100,
                                   reprojectionError=8.0,
                                   confidence=0.99,
                                   flags=cv2.SOLVEPNP_ITERATIVE)

The solver may or may not have converged on a solution to the PnP problem. If it8.
did not converge, we do nothing further in this method. If it did converge, the
next thing we do is to check whether we were already tracking the object in the
previous frame. If we were not already tracking it – in other words, if we are
starting to track the object afresh in this frame – then we reinitialize the Kalman
filter by calling a helper method, _init_kalman_state_matrices:

            if success:

                if not self._was_tracking:
                    self._init_kalman_state_matrices()



Camera Models and Augmented Reality Chapter 9

[ 273 ]

Now, in any case, we are tracking the object in this frame, so we can apply the9.
Kalman filter by calling another helper method, _apply_kalman:

                self._was_tracking = True

                self._apply_kalman()

At this stage, we have a Kalman-filtered 6DOF pose. We also have a list of the10.
inlier keypoints from cv2.solvePnPRansac. To help the user visualize the
result, let's draw the inlier keypoints in green:

                # Select the inlier keypoints.
                inlier_keypoints = [good_keypoints[i]
                                    for i in inlier_indices.flat]

                # Draw the inlier keypoints in green.
                cv2.drawKeypoints(self._bgr_image, inlier_keypoints,
                                  self._bgr_image, (0, 255, 0))

Remember that earlier in this method, we drew all the keypoints in red. Now that
we have drawn over the inlier keypoints in green, only the outlier keypoints are
still red.

Finally, we call two more helper methods: the self._draw_object axes to11.
draw the tracked object's 3D axes, and self._make_and_draw_object_mask to
make and draw a mask of the region that contains the object:

                # Draw the axes of the tracked object.
                self._draw_object_axes()

                # Make and draw a mask around the tracked object.
                self._make_and_draw_object_mask()

There ends the implementation of our _track_object method. By now, we have a mostly
complete picture of our tracking algorithm's implementation, but we still need to
implement helper methods relating to the Kalman filter (in the next section, Initializing and
applying the Kalman filter), and masking and AR drawing (in the section after that, Drawing
the tracking results and masking the tracked object).



Camera Models and Augmented Reality Chapter 9

[ 274 ]

Initializing and applying the Kalman filter
We looked at some aspects of the Kalman filter's initialization earlier, in the Initializing the
tracker section. However, in that section, we noted that some of Kalman filter's matrices
need to be initialized or reinitialized multiple times, as the application runs through
various frames and various states of tracking or not tracking. Specifically, the following
matrices will change:

The transition matrix: This matrix expresses the temporal relationships among
all the output variables. For example, this matrix can model the effects of
acceleration on velocity, and of velocity on position. We will reinitialize the
transition matrix every frame because the frame rate (and, therefore, the time
step between frames) is variable. Effectively, this is a way of scaling the previous
predictions of acceleration and velocity to match the new time step.
The pre-correction and post-correction state matrices: These matrices contain
the predictions of the output variables. The predictions in the pre-correction
matrix only take account of the previous state and the transition matrix. The
predictions in the post-correction matrix also take account of new inputs and the
Kalman filter's other matrices. We will reinitialize the state matrices whenever
we go from a non-tracking state to a tracking state – in other words, when we
failed to track the object in the previous frame but now we succeed in tracking it
in the current frame. Effectively, this is a way of clearing outdated predictions,
and starting afresh from new measurements.

Let's take a look at the transition matrix first. Its initialization method will take one
argument, fps, that is, the frame rate in frames per second. We can implement the method
in three steps:

We begin by validating the fps argument. If it is not positive, we return1.
immediately without updating the transition matrix:

    def _init_kalman_transition_matrix(self, fps):

        if fps <= 0.0:
            return



Camera Models and Augmented Reality Chapter 9

[ 275 ]

Having determined that fps is positive, we proceed to calculate transition rates2.
for velocity and acceleration. We want the velocity transition rate to be
proportional to the time step (that is, the time per frame). Because fps (frames
per second) is the inverse of the time step (that is, seconds per frame), the
velocity transition rate is inversely proportional to fps. The acceleration
transition rate is proportional to the square of the velocity transition rate (and
thus, indirectly, the acceleration transition rate is inversely proportional to the
square of fps). Choosing 1.0 as a base scale for the velocity transition rate and 0.5
as a base scale for the acceleration transition rate, we can calculate them in code
as follows:

        # Velocity transition rate
        vel = 1.0 / fps

        # Acceleration transition rate
        acc = 0.5 * (vel ** 2.0)

Next, we populate the transition matrix. Since we have 18 output variables, the3.
transition matrix has 18 rows and 18 columns. First, let's take a look at the
content of the matrix, and, afterward, we will consider how to interpret it:

        self._kalman.transitionMatrix = numpy.array(
            [[1.0, 0.0, 0.0, vel, 0.0, 0.0, acc, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 1.0, 0.0, 0.0, vel, 0.0, 0.0, acc, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 1.0, 0.0, 0.0, vel, 0.0, 0.0, acc,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, vel, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, vel, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, vel,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              1.0, 0.0, 0.0, vel, 0.0, 0.0, acc, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 1.0, 0.0, 0.0, vel, 0.0, 0.0, acc, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 1.0, 0.0, 0.0, vel, 0.0, 0.0, acc],



Camera Models and Augmented Reality Chapter 9

[ 276 ]

             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 1.0, 0.0, 0.0, vel, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, vel, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, vel],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
             [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
              0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0]],
            numpy.float32)

Each row expresses a formula for calculating a new output value based on the
previous frame's output values. Let's consider the first row as an example. We can
interpret it as follows:

The new tx value depends on the old tx, tx', and tx'' values, along with the velocity
transition rate, v, and the acceleration transition rate, a. As we saw earlier in this
function, these transition rates may vary because the time step may vary.

That concludes the implementation of the helper method to initialize or update the
transition matrix. Remember that we call this function every frame because the frame rate
(and thus the time step) may have changed.

We also need a helper function to initialize the state matrices. Remember that we call this
method whenever we transition from a non-tracking state to a tracking state. This transition
is an appropriate time to clear out any previous predictions; instead, we are starting afresh
with the belief that the object's 6DOF pose is exactly what the PnP solver says it is.
Moreover, we assume that the object is stationary, with zero velocity and zero acceleration.
Here is the helper method's implementation:

    def _init_kalman_state_matrices(self):

        t_x, t_y, t_z = self._translation_vector.flat
        r_x, r_y, r_z = self._rotation_vector.flat

        self._kalman.statePre = numpy.array(
            [[t_x], [t_y], [t_z],
             [0.0], [0.0], [0.0],
             [0.0], [0.0], [0.0],
             [r_x], [r_y], [r_z],
             [0.0], [0.0], [0.0],



Camera Models and Augmented Reality Chapter 9

[ 277 ]

             [0.0], [0.0], [0.0]], numpy.float32)
        self._kalman.statePost = numpy.array(
            [[t_x], [t_y], [t_z],
             [0.0], [0.0], [0.0],
             [0.0], [0.0], [0.0],
             [r_x], [r_y], [r_z],
             [0.0], [0.0], [0.0],
             [0.0], [0.0], [0.0]], numpy.float32)

Note that the state matrices have one row and 18 columns since we have 18 output
variables.

Now that we have covered the process of initializing and reinitializing the Kalman filter's
matrices, let's take a look at how we apply the filter. As we have previously seen in Chapter
8, Tracking Objects, we can ask the Kalman filter to estimate the object's new pose (the pre-
correction state of the output variables), then we can tell it to take account of the latest
unstabilized tracking result (the input variables) in order to adjust its estimate (thereby
producing the post-correction state), and, finally, we can extract variables from the adjusted
estimate to use as our stabilized tracking result. Compared to our previous work, the only
difference this time is that we have more input and output variables. The following code
shows how we implement a method to apply the Kalman filter in the context of our 6DOF
tracker:

    def _apply_kalman(self):

        self._kalman.predict()

        t_x, t_y, t_z = self._translation_vector.flat
        r_x, r_y, r_z = self._rotation_vector.flat

        estimate = self._kalman.correct(numpy.array(
            [[t_x], [t_y], [t_z],
             [r_x], [r_y], [r_z]], numpy.float32))

        self._translation_vector = estimate[0:3]
        self._rotation_vector = estimate[9:12]

Here, note that estimate[0:3] corresponds to tx, ty, and tz, while estimate[9:12]
corresponds to rx, ry, and rz. The rest of the estimate array corresponds to the first-order
derivatives (velocity) and second-order derivatives (acceleration).



Camera Models and Augmented Reality Chapter 9

[ 278 ]

By this point, we have almost fully explored the implementation of our 3D tracking
algorithm, including the use of the Kalman filter to stabilize the 6DOF pose, as well as the
velocity and acceleration. Now, let's turn our attention to two final implementation details
of our ImageTrackingDemo class: the AR drawing methods and the creation of a mask
based on the tracking results.

Drawing the tracking results and masking the tracked
object
We will implement one helper method, _draw_object_axes, to draw a visualization of
the tracked object's X, Y, and Z axes. We will also implement another helper method,
_make_and_draw_object_mask, to project the object's vertices from 3D to 2D, create a
mask based on the object's silhouette, and tint this masked region yellow as a visualization.

Let's start with the implementation of _draw_object_axes. We can consider it in three
stages:

First, we want to take a set of 3D points located along the axes, and project these1.
points to the 2D image space. Remember that we defined the 3D axis points in
our __init__ method, in the Initializing the tracker section. They will simply
serve as endpoints of the axis arrows that we will draw. Using the
cv2.projectPoints function, our 6DOF tracking result, and our camera
matrix, we can find the 2D projected points as follows:

    def _draw_object_axes(self):

        points_2D, jacobian = cv2.projectPoints(
            self._reference_axis_points_3D, self._rotation_vector,
            self._translation_vector, self._camera_matrix,
            self._distortion_coefficients)

Besides returning the projected 2D points, cv2.projectPoints also
returns the Jacobian matrix, which represents the partial derivatives (with
respect to the input parameters) of the function used to calculate the 2D
points. This information is potentially useful for camera calibration, but
we do not use it in our example.



Camera Models and Augmented Reality Chapter 9

[ 279 ]

The projected points are in floating-point format, but we will need integers to2.
pass to OpenCV's drawing functions. Thus, we perform the following
conversions to integer format:

        origin = (int(points_2D[0, 0, 0]), int(points_2D[0, 0, 1]))
        right = (int(points_2D[1, 0, 0]), int(points_2D[1, 0, 1]))
        up = (int(points_2D[2, 0, 0]), int(points_2D[2, 0, 1]))
        forward = (int(points_2D[3, 0, 0]), int(points_2D[3, 0, 1]))

Having calculated the endpoints, we can now draw three arrowed lines to3.
represent the X, Y, and Z axes:

        # Draw the X axis in red.
        cv2.arrowedLine(self._bgr_image, origin, right, (0, 0, 255))

        # Draw the Y axis in green.
        cv2.arrowedLine(self._bgr_image, origin, up, (0, 255, 0))

        # Draw the Z axis in blue.
        cv2.arrowedLine(
            self._bgr_image, origin, forward, (255, 0, 0))

We have finished implementing _draw_object_axes. Now, let's turn our attention to
_make_and_draw_object_mask, which we can also consider in terms of three steps:

Like the previous function, this one begins by projecting points from 3D to 2D.1.
This time, we are projecting the reference object's vertices, which we defined in
our __init__ method, in the Initializing the tracker section. Here is the projection
code:

    def _make_and_draw_object_mask(self):

        # Project the object's vertices into the scene.
        vertices_2D, jacobian = cv2.projectPoints(
            self._reference_vertices_3D, self._rotation_vector,
            self._translation_vector, self._camera_matrix,
            self._distortion_coefficients)



Camera Models and Augmented Reality Chapter 9

[ 280 ]

Again, we convert the projected points from a floating-point format to an integer2.
format (as OpenCV's drawing functions expect integers):

        vertices_2D = vertices_2D.astype(numpy.int32)

The projected vertices form a convex polygon. We can paint the mask black (as a3.
background), and then draw this convex polygon in white:

        # Make a mask based on the projected vertices.
        self._mask.fill(0)
        for vertex_indices in \
                self._reference_vertex_indices_by_face:
            cv2.fillConvexPoly(
                self._mask, vertices_2D[vertex_indices], 255)

Remember that our _track_object method will use this mask when it processes
the next frame. Specifically, _track_object will only look for keypoints in the
masked region. Therefore, it will attempt to find the object in the region where we
recently found it.

Potentially, we could improve this technique by applying a morphological
dilation operation to expand the masked region. In this way, we would
search for the object, not only in the region where we recently found it,
but also in the surrounding region.

Now, in the BGR frame, let's highlight the masked region in yellow in order to4.
visualize the shape of the tracked object. To make a region more yellow, we can
subtract a value from the blue channel. The cv2.subtract function suits our
purpose because it accepts an optional mask argument. Here is how we use it:

        # Draw the mask in semi-transparent yellow.
        cv2.subtract(
            self._bgr_image, 48, self._bgr_image, self._mask)

When we tell cv2.subtract to subtract a single scalar value such as 48
from an image, it subtracts the value only from the image's first channel –
in this case (and most cases), the blue channel of a BGR image. This is
arguably a bug, but it is convenient for tinting things yellow!



Camera Models and Augmented Reality Chapter 9

[ 281 ]

That was the last method in the ImageTrackingDemo class. Now, let's bring the demo to
life by instantiating this class and calling its run method!

Running and testing the application
To complete the implementation of ImageTrackingDemo.py, let's write a main function
that launches the application with a specified capture device, FOV, and target frame rate:

def main():

    capture = cv2.VideoCapture(0)
    capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
    capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
    diagonal_fov_degrees = 70.0
    target_fps = 25.0

    demo = ImageTrackingDemo(
        capture, diagonal_fov_degrees, target_fps)
    demo.run()

if __name__ == '__main__':
    main()

Here, we are using a capture resolution of 1280 x 720, a diagonal FOV of 70 degrees, and a
target frame rate of 25 FPS. You should choose parameters that are appropriate for your
camera and lens, and for the speed of your system.

Let's suppose we run the application, and it loads the following image from
reference_image.png:



Camera Models and Augmented Reality Chapter 9

[ 282 ]

This is, of course, the cover of OpenCV 4 for Secret Agents (Packt
Publishing, 2019), a book by Joseph Howse. Not only is it a vault of secret
knowledge, it is also a good target for image tracking. You should buy a
print copy!



Camera Models and Augmented Reality Chapter 9

[ 283 ]

During initialization, the application saves the following visualization of the reference
keypoints to a new file called reference_image_keypoints.png:

We have seen this type of visualization before in Chapter 6, Retrieving Images and Searching
Using Image Descriptors. The large circles represent keypoints that can be matched at a small
scale (for example, when we view the printed image from a large distance or with a low-
resolution camera). The small circles represent keypoints that can be matched at a large
scale (for example, when we view the printed image at a close distance or with a high-
resolution camera). The best keypoints are the ones marked by many concentric circles,
since these can be matched at various scales. Within each circle, the radial line represents
the normal orientation of the keypoint.

Studying this visualization, we can infer that this image's best keypoints are concentrated in
the high-contrast text (white against dark gray) in the top part of the image. Other useful
keypoints are found in many regions, including the high-contrast lines (black against
saturated colors) in the bottom part of the image.



Camera Models and Augmented Reality Chapter 9

[ 284 ]

Next, we see a camera feed. When we put a print of the reference image in front of the
camera, we see an AR visualization of the tracking results:

Of course, the preceding screenshot shows a nearly-frontal view of the book cover. The axis
directions are drawn as expected. The X axis (in red) points to the book cover's right (the
viewer's left). The Y axis (in green) points up. The Z axis (in blue) points forward from the
book cover (toward the viewer). As an AR effect, a semitransparent yellow highlight is
superimposed atop the tracked book cover (including the part covered up by Joseph
Howse's index finger and middle finger). The positions of the small green and red dots
show that in this frame, the good keypoint matches are concentrated in the region of the
book's title, and most of these good matches are inliers for cv2.solvePnPRansac.

If you are reading the print edition of this book, the screenshots are
reproduced in grayscale. To make the X, Y, and Z axes easier to
distinguish in a grayscale print, text labels have been added to the
screenshots manually; these text labels are not part of the program's
output.



Camera Models and Augmented Reality Chapter 9

[ 285 ]

Because we took care to find good keypoints in several regions throughout the image, the
tracking can succeed even when a large part of the tracked image is in shadow, covered up,
or outside the frame. For example, in the following screenshot, the axis directions and
highlighted region are correct, even though most of the book cover (including nearly all of
the book title's, with the best keypoints) is outside the frame:

Go ahead and conduct your own experiments with various reference images, cameras, and
viewing conditions. Try various resolutions for the reference image and camera. Remember
to measure your camera's FOV and adjust the FOV argument accordingly. Study the
keypoint visualizations and the tracking results. What kinds of input yield good (or bad)
tracking results in our demo? 

If you find it inconvenient to use printed images for tracking, you can
instead point your camera at a screen (such as a smartphone screen)
where you are displaying the image you want to track. Because a screen is
backlit (and it might be glossy, too), it might not give a faithful
representation of how a printed image would look in any given scene, but
it typically works well for a tracker's purposes.



Camera Models and Augmented Reality Chapter 9

[ 286 ]

Once you have experimented to your heart's content, let's consider some of the ways our
3D tracker could be improved.

Improving the 3D tracking algorithm
Essentially, our 3D tracking algorithm combines three approaches:

Find a 6DOF pose with a PnP solver, whose inputs depend on FLANN-based1.
matches of ORB descriptors.
Use a Kalman filter to stabilize the 6DOF tracking result.2.
If an object was tracked in the previous frame, use a mask to limit the search to3.
the region where the object is now most likely to be found.

Often, commercial solutions for 3D tracking involve additional approaches. We have relied
on successfully using a descriptor matcher and a PnP solver for every frame; however, a
more complex algorithm may provide some alternatives as fallbacks or as cross-checking
mechanisms. This is in case the descriptor matcher and PnP solver miss the object in some
frames, or in case they are too computationally expensive to use for every frame. The
following alternatives are widely used:

Update the previous keypoint matches based on optical flow, and update the
previous 6DOF pose based on the homography between the keypoints' old and
new positions (according to the optical flow).
Update the rotational component of the 6DOF pose based on a gyroscope and
magnetometer (compass). Typically, even in consumer devices, these sensors can
successfully measure small or large changes in rotation.
Update the positional component of the 6DOF pose based on a barometer and
GPS. Typically, in consumer devices, a barometer can measure changes in
altitude with an accuracy of approximately 10 cm, while GPS can measure
changes in longitude and latitude with an accuracy of approximately 10 m.
Depending on the use case, these may or may not be usable levels of accuracy. If
we are attempting to perform AR on large and distant features of a landscape –
for example, if we want to draw a virtual dragon perched atop a real
mountaintop – then 10 m accuracy may be fine. For detailed work – for example,
if we want to draw a virtual ring on a real finger – 10 cm accuracy is unusable.
Update the positional acceleration component of the Kalman filter based on an
accelerometer. Typically, in consumer devices, accelerometers suffer from drift (a
tendency for errors to exhibit runaway growth in one direction or another), so
this option should be approached with caution.



Camera Models and Augmented Reality Chapter 9

[ 287 ]

These alternative techniques are beyond the scope of this book – and, indeed, some of them
are not computer vision techniques – so we leave them to you for independent study.

A final word: Sometimes, significant improvements in tracking results are achievable by
altering a preprocessing algorithm rather than the tracking algorithm per se. Earlier in this
chapter, in the Performing grayscale conversion section, we mentioned Macêdo, Melo, and
Kelner's paper on grayscale conversion algorithms and SIFT descriptors. You may wish to
read that paper and conduct your own experiments to determine how the choice of
grayscale conversion algorithm affects the number of tracking inliers when using ORB
descriptors or other types of descriptors.

Summary
This chapter introduced AR, along with a robust set of approaches to the problem of
tracking an image in 3D space.

We began by learning the concept of 6DOF tracking. We recognized that familiar tools such
as ORB descriptors, FLANN-based matching, and Kalman filtering are useful in this kind of
tracking, but that we also needed to work with camera and lens parameters in order to
solve the PnP problem.

Next, we addressed practical considerations of how best to represent a reference object
(such as a book cover or a photo print) in the form of a grayscale image, a set of 2D
keypoints, and a set of 3D keypoints.

We proceeded to implement a class that encapsulated a demo of image tracking in 3D
space, with a 3D highlighting effect as a basic form of AR. Our implementation dealt with
real-time considerations, such as the need to update the Kalman filter's transition matrix
based on fluctuations in the frame rate.

Finally, we considered ways to potentially improve the 3D tracking algorithm using
additional computer vision techniques, or other sensor-based techniques.

Now, we are approaching the book's final chapter, which offers a different perspective on
many of the problems we have tackled up to this point. We can set aside (for now) our
thoughts of cameras and geometry, and instead start thinking as statisticians, because we
are going to deepen our knowledge of machine learning with a look at artificial neural
networks (ANNs).



10
Introduction to Neural Networks

with OpenCV
This chapter introduces a family of machine learning models called artificial neural
networks (ANNs), or sometimes just neural networks. A key characteristic of these models
is that they attempt to learn relationships among variables in a multi-layered fashion; they
learn multiple functions to predict intermediate results before combining these into a single
function to predict something meaningful (such as the class of an object). Recent versions of
OpenCV contain an increasing amount of functionality related to ANNs – and, in
particular, ANNs with many layers, called deep neural networks (DNNs). We will
experiment with both shallower ANNs and DNNs in this chapter.

We have already gained some exposure to machine learning in other chapters – especially
in Chapter 7, Building Custom Object Detectors, where we developed a car/non-car classifier
using SURF descriptors, a BoW, and an SVM. With this basis for comparison, you might be
wondering, what is so special about ANNs? Why are we devoting this book's final chapter
to them?

ANNs aim to provide superior accuracy in the following circumstances:

There are many input variables, which may have complex, nonlinear
relationships to each other.
There are many output variables, which may have complex, nonlinear
relationships to the input variables. (Typically, the output variables in a
classification problem are the confidence scores for the classes, so if there are
many classes, there are many output variables.)



Introduction to Neural Networks with OpenCV Chapter 10

[ 289 ]

There are many hidden (unspecified) variables that may have complex, nonlinear
relationships to the input and output variables. DNNs even aim to model multiple
layers of hidden variables, which are interrelated primarily to each other rather
than being related primarily to input or output variables.

These circumstances exist in many – perhaps most – real-world problems. Thus, the
promised advantages of ANNs and DNNs are enticing. On the other hand, ANNs and
especially DNNs are notoriously opaque models, insofar as they work by predicting the
existence of an arbitrary number of nameless, hidden variables that may relate to
everything else.

Over the course of this chapter, we will cover the following topics:

Understanding ANNs as a statistical model and as a tool for supervised machine
learning.
Understanding ANN topology or, in other words, the organization of an ANN
into layers of interconnected neurons. Particularly, we will consider the topology
that enables an ANN to act as a type of classifier known as a multi-layer
perceptron (MLP).
Training and using ANNs as classifiers in OpenCV.
Building an application that detects and recognizes handwritten digits (0 to 9).
For this, we will train an ANN based on a widely used dataset called MNIST,
which contains samples of handwritten digits.
Loading and using pre-trained DNNs in OpenCV. We will cover examples of
object classification, face detection, and gender classification with DNNs.

By the end of this chapter, you will be in a good position to train and use ANNs in
OpenCV, to use pre-trained DNNs from a variety of sources, and to start exploring other
libraries that allow you to train your own DNNs.

Technical requirements
This chapter uses Python, OpenCV, and NumPy. Please refer to Chapter 1, Setting Up
OpenCV, for installation instructions.



Introduction to Neural Networks with OpenCV Chapter 10

[ 290 ]

The completed code and sample videos for this chapter can be found in this book's GitHub
repository, https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-
with-Python-Third-Edition, in the chapter10 folder.

Understanding ANNs
Let's define ANNs in terms of their basic role and components. Although much of the
literature on ANNs emphasizes the idea that they are biologically inspired by the way
neurons connect in a brain, we don't need to be biologists or neuroscientists to understand
the fundamental concepts of an ANN.

First of all, an ANN is a statistical model. What is a statistical model? A statistical model is
a pair of elements, namely the space S (a set of observations) and the probability, P, where P
is a distribution that approximates S (in other words, a function that would generate a set
of observations that is very similar to S).

Here are two different ways to think of P:

P is a simplification of a complex scenario.
P is the function that generated S in the first place, or at the very least a set of
observations very similar to S.

Thus, ANNs are models that take a complex reality, simplify it, and deduce a function to
(approximately) represent the statistical observations we would expect from that reality, in
a mathematical form.

ANNs, like other types of machine learning models, can learn from observations in one of
the following ways:

Supervised learning: Under this approach, we want the model's training process
to produce a function that maps a known set of input variables to a known set of
output variables. We know, a priori, the nature of the prediction problem, and we
delegate the process of finding a function that solves this problem to the ANN.
To train the model, we must provide input samples along with the correct,
corresponding outputs. For a classification problem, the output variables may be
confidence scores for one or more classes.

https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition
https://github.com/PacktPublishing/Learning-OpenCV-4-Computer-Vision-with-Python-Third-Edition


Introduction to Neural Networks with OpenCV Chapter 10

[ 291 ]

Unsupervised learning: Under this approach, the set of output variables is not
known a priori. The model's training process must yield a set of output variables,
as well as a function to map the input variables to these output variables. For a
classification problem, unsupervised learning can lead to the discovery of
previously unknown classes, such as previously unknown diseases in the context
of medical data. Unsupervised learning may use techniques including (but not
limited to) clustering, which we explored in the context of BoW models in
Chapter 7, Building Custom Object Detectors.
Reinforcement learning: This approach turns the typical prediction problem
upside down. Before training the model, we already have a system that yields
values for a known set of output variables when we feed it values for a known
set of input variables. We know, a priori, a way of scoring a sequence of outputs
based on their goodness (desirability) or lack thereof. However, we might not
know the real function that maps inputs to outputs – or, even if we do know it, it
is so complex that we cannot solve it for optimal inputs. Thus, we want the
model's training process to produce a function that predicts the next-in-sequence
optimal inputs, based on the last outputs. During training, the model learns from
the score that eventually arises from its actions (its chosen inputs). Essentially,
the model must learn to become a good decision-maker within the context of a
particular system of rewards and punishments.

Throughout the remainder of this chapter, we will confine our discussions to supervised
learning, as this is the most common approach to machine learning in the context of
computer vision.

The next step in our journey toward comprehending ANNs is to understand how an ANN
improves on the concept of a simple statistical model, and on other types of machine
learning.

What if the function that generated the dataset is likely to take a large number of
(unknown) inputs?

The strategy that ANNs adopt is to delegate work to a number of neurons, nodes, or units,
each of which is capable of approximating the function that created the inputs. In
mathematics, approximation is the process of defining a simpler function whose output is
similar to that of a more complex function, at least for some range of inputs.



Introduction to Neural Networks with OpenCV Chapter 10

[ 292 ]

The difference between the approximate function's output and the original function's
output is called the error. A defining characteristic of a neural network is that the neurons
must be capable of approximating a nonlinear function.

Let's take a closer look at neurons.

Understanding neurons and perceptrons
Often, to solve a classification problem, an ANN is designed as a multi-layer perceptron
(MLP), in which each neuron acts as a kind of binary classifier called a perceptron. The
perceptron is a concept that dates back to the 1950s. To put it simply, a perceptron is a
function that takes a number of inputs and produces a single value. Each of the inputs has
an associated weight that signifies its importance in an activation function. The activation
function should have a nonlinear response; for example, a sigmoid function (sometimes
called an S-curve) is a common choice. A threshold function, called a discriminant, is
applied to the activation function's output to convert it into a binary classification of 0 or 1.
Here is a visualization of this sequence, with inputs on the left, the activation function in
the middle, and the discriminant on the right:

What do the input weights represent, and how are they determined?

Neurons are interconnected, insofar as one neuron's output can be an input for many other
neurons. Each input weight defines the strength of the connection between two neurons.
These weights are adaptive, meaning that they change in time according to a learning
algorithm.

Due to the neurons' interconnectedness, the network has layers. Now, let's examine how
these layers are typically organized.



Introduction to Neural Networks with OpenCV Chapter 10

[ 293 ]

Understanding the layers of a neural network
Here is a visual representation of a neural network:

As the preceding diagram shows, there are at least three distinct layers in a neural network:
the input layer, the hidden layer, and the output layer. There can be more than one hidden
layer; however, one hidden layer is enough to resolve many real-life problems. A neural
network with multiple hidden layers is sometimes called a deep neural network (DNN).

If we are using an ANN as a classifier, then each output node's output
value is a confidence score for a class. For a given sample (that is, a given
set of input values), we want to know which output node produces the
highest output value. This highest-scoring output node corresponds to the
predicted class.

How do we determine the network's topology, and how many neurons do we need to
create for each layer? Let's make this determination layer by layer.



Introduction to Neural Networks with OpenCV Chapter 10

[ 294 ]

Choosing the size of the input layer
The number of nodes in the input layer is, by definition, the number of inputs into the
network. For example, let's say you want to create an ANN to help you determine an
animal's species based on measurements of its physical attributes. In principle, we can
choose any measurable attributes. If we choose to classify animals based on weight, length,
and number of teeth, that is a set of three attributes, and thus our network needs to contain
three input nodes.

Are these three input nodes an adequate basis for species classification? Well, in a real-life
problem, surely not – but in a toy problem, it depends on the output we are trying to
achieve, and this is our next consideration.

Choosing the size of the output layer
For a classifier, the number of nodes in the output layer is, by definition, the number of
classes the network can distinguish. Continuing with the preceding example of an animal
classification network, we can use an output layer of four nodes if we know we are going to
deal with the following animals: dog, condor, dolphin, and dragon(!). If we try to classify
data for an animal that is not in one of these categories, the network will predict the class
that is most likely to resemble this unrepresented animal.

Now, we come to a difficult problem – the size of the hidden layer.

Choosing the size of the hidden layer
There are no agreed-upon rules of thumb for choosing the size of the hidden layer; it must
be chosen based on experimentation. For every real-world problem where you want to
apply ANNs, you will need to train, test, and retrain your ANN until you find a number of
hidden nodes that yield acceptable accuracy.

Of course, even when choosing a parameter's value by experimentation, you might wish for
the experts to suggest a starting value, or a range of values, for your tests. Unfortunately,
there is no expert consensus on these points either. Some experts offer rules of thumb based
on the following broad suggestions (these should be taken with a grain of salt):

If the input layer is large, the number of hidden neurons should be between the
size of the input layer and the size of the output layer – and, typically, closer to
the size of the output layer.



Introduction to Neural Networks with OpenCV Chapter 10

[ 295 ]

On the other hand, if the input and output layers are both small, the hidden layer
should be the largest layer.
If the input layer is small but the output layer is large, the hidden layer should be
closer to the size of the input layer.

Other experts suggest that the number of training samples also needs to be taken into
account; a greater number of training samples implies that a greater number of hidden
nodes might be useful.

One critical factor to keep in mind is overfitting. Overfitting occurs when there is such an
inordinate amount of pseudo-information contained in the hidden layer, compared to the
information actually provided by the training data, that the classification is not very
meaningful. The larger the hidden layer, the more training data it requires in order for it to
learn properly. Of course, as the size of the training dataset grows, so does the training
time.

For some of the ANN sample projects in this chapter, we will use a hidden layer size of 60
as a starting point. Given a large training set, 60 hidden nodes can yield decent accuracy for
a variety of classification problems.

Now that we have a general idea of what ANNs are, let's see how OpenCV implements
them, and how to put them to good use. We will start with a minimal code example. Then,
we will flesh out the animal-themed classifier that we discussed in the previous two
sections. Finally, we will work our way up to a more realistic application, in which we will
classify handwritten digits based on image data.

Training a basic ANN in OpenCV
OpenCV provides a class, cv2.ml_ANN_MLP, that implements an ANN as a multi-layer
perceptron (MLP). This is exactly the kind of model we described earlier, in the
Understanding neurons and perceptrons section.

To create an instance of cv2.ml_ANN_MLP, and to format data for this ANN's training and
use, we rely on functionality in OpenCV's machine learning module, cv2.ml. As you may
recall, this is the same module that we used for SVM-related functionality in Chapter 7,
Building Custom Object Detectors. Moreover, cv2.ml_ANN_MLP and cv2.ml_SVM share a
common base class called cv2.ml_StatModel. Therefore, you will find that OpenCV
provides similar APIs for ANNs and SVMs.



Introduction to Neural Networks with OpenCV Chapter 10

[ 296 ]

Let's examine a dummy example as a gentle introduction to ANNs. This example will use
completely meaningless data, but it will show us the basic API for training and using an
ANN in OpenCV:

To begin, we import OpenCV and NumPy as usual:1.

import cv2
import numpy as np

Now, we create an untrained ANN:2.

ann = cv2.ml.ANN_MLP_create()

After creating the ANN, we need to configure its number of layers and nodes:3.

ann.setLayerSizes(np.array([9, 15, 9], np.uint8))

The layer sizes are defined by the NumPy array that we pass to the
setLayerSizes method. The first element is the size of the input layer, the last
element is the size of the output layer, and all the in-between elements define the
sizes of the hidden layers. For example, [9, 15, 9] specifies 9 input nodes, 9
output nodes, and a single hidden layer with 15 nodes. If we changed this to [9,
15, 13, 9], it would specify two hidden layers with 15 and 13 nodes,
respectively.

We can also configure the activation function, the training method, and the4.
training termination criteria, as follows:

ann.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 0.6, 1.0)
ann.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP, 0.1, 0.1)
ann.setTermCriteria(
    (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 100, 1.0))

Here, we are using a symmetrical sigmoid activation function
(cv2.ml.ANN_MLP_SIGMOID_SYM) and a backpropagation training method
(cv2.ml.ANN_MLP_BACKPROP). Backpropagation is an algorithm that calculates
errors of predictions at the output layer, traces the sources of the errors backward
through previous layers, and updates the weights in order to reduce errors.



Introduction to Neural Networks with OpenCV Chapter 10

[ 297 ]

Let's train the ANN. We need to specify training inputs (or samples, in5.
OpenCV's terminology), the corresponding correct outputs (or responses), and
whether the data's format (or layout) is one row per sample or one column per
sample. Here is an example of how we train the model with a single sample:

training_samples = np.array(
    [[1.2, 1.3, 1.9, 2.2, 2.3, 2.9, 3.0, 3.2, 3.3]], np.float32)
layout = cv2.ml.ROW_SAMPLE
training_responses = np.array(
    [[0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]], np.float32)
data = cv2.ml.TrainData_create(
    training_samples, layout, training_responses)
ann.train(data)

Realistically, we would want to train any ANN with a larger dataset that
contains far more than one sample. We could do this by extending
training_samples and training_responses so that they contain
multiple rows, representing multiple samples and their corresponding
responses. Alternatively, we could call the ANN's train method multiple
times, with new data each time. The latter approach requires some
additional arguments for the train method, and it is demonstrated in the
next section, Training an ANN- classifier in multiple epochs.

Note that in this case, we are training the ANN as a classifier. Each response is a
confidence score for a class, and in this case, there are nine classes. We will refer
to them by their 0-based indices, as classes 0 to 8. Our training sample in this case
has a response of [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0],
meaning that it is an instance of class 5 (with confidence 1.0), and it is definitely
not an instance of any other class (as the confidence is 0.0 for every other class).

To complete our minimal tour of the ANN's API, let's make another sample,6.
classify it, and print the result:

test_samples = np.array(
    [[1.4, 1.5, 1.2, 2.0, 2.5, 2.8, 3.0, 3.1, 3.8]], np.float32)
prediction = ann.predict(test_samples)
print(prediction)



Introduction to Neural Networks with OpenCV Chapter 10

[ 298 ]

This will print the following result:

(5.0, array([[-0.08763029, -0.01616517, 0.13196233, 0.0402631 , 0.05711843,
         1.1642447 , 0.18130444, 0.1857026 , -0.07486832]],
      dtype=float32))

This means that the provided input was classified as belonging to class 5. Again, this is only
a dummy example and the classification is pretty meaningless; however, the network
behaved correctly. In the preceding code, we only provided one training record, which was
a sample of class 5, so the network classified a new input as belonging to class 5. (As far as
our woefully limited training dataset suggests, other classes besides 5 might never occur.)

As you may have guessed, the output of a prediction is a tuple, with the first value being
the class and the second being an array containing the probabilities for each class. The
predicted class will have the highest value.

Let's move on to a slightly more believable example – animal classification.

Training an ANN classifier in multiple
epochs
Let's create an ANN that attempts to classify animals based on three measurements: weight,
length, and number of teeth. This is, of course, a mock scenario. Realistically, no one would
describe an animal with just these three statistics. However, our intent is to improve our
understanding of ANNs before we start applying them to image data.

Compared to the minimal example in the previous section, our animal classification mock-
up will be more sophisticated in the following ways:

We will increase the number of neurons in the hidden layer.
We will use a larger training dataset. For convenience, we will generate this
dataset pseudorandomly.
We will train the ANN in multiple epochs, meaning that we will train and retrain
it multiple times with the same dataset each time.



Introduction to Neural Networks with OpenCV Chapter 10

[ 299 ]

The number of neurons in the hidden layer is an important parameter that
needs to be tested in order to optimize the accuracy of any ANN. You will
find that a larger hidden layer may improve accuracy up to a point, and
then it will overfit, unless you start compensating with an enormous
training dataset. Likewise, up to a point, a greater number of epochs may
improve accuracy, but too many will result in overfitting.

Let's go through the implementation step by step:

First, we import OpenCV and NumPy as usual. Then, from the Python standard1.
library, we import the randint function to generate pseudorandom integers and
the uniform function to generate pseudorandom floating-point numbers:

import cv2
import numpy as np
from random import randint, uniform

Next, we create and configure the ANN. This time, we use a three-neuron input2.
layer, a 50-neuron hidden layer, and a four-neuron output layer, as highlighted
in bold in the following code:

animals_net = cv2.ml.ANN_MLP_create()
animals_net.setLayerSizes(np.array([3, 50, 4]))
animals_net.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 0.6,
1.0)
animals_net.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP, 0.1, 0.1)
animals_net.setTermCriteria(
    (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 100, 1.0))

Now, we need some data. We aren't really interested in representing animals3.
accurately; we just require a bunch of records to be used as training data. Thus,
we define four functions in order to generate random samples of different
classes, along with another four functions to generate the correct classification
results for training purposes:

"""Input arrays
weight, length, teeth
"""

"""Output arrays
dog, condor, dolphin, dragon
"""

def dog_sample():
    return [uniform(10.0, 20.0), uniform(1.0, 1.5),



Introduction to Neural Networks with OpenCV Chapter 10

[ 300 ]

        randint(38, 42)]

def dog_class():
    return [1, 0, 0, 0]

def condor_sample():
    return [uniform(3.0, 10.0), randint(3.0, 5.0), 0]

def condor_class():
    return [0, 1, 0, 0]

def dolphin_sample():
    return [uniform(30.0, 190.0), uniform(5.0, 15.0),
        randint(80, 100)]

def dolphin_class():
    return [0, 0, 1, 0]

def dragon_sample():
    return [uniform(1200.0, 1800.0), uniform(30.0, 40.0),
        randint(160, 180)]

def dragon_class():
    return [0, 0, 0, 1]

We also define the following helper function in order to convert a sample and4.
classification into a pair of NumPy arrays:

def record(sample, classification):
    return (np.array([sample], np.float32),
            np.array([classification], np.float32))

Let's proceed with the creation of our fake animal data. We will create 20,0005.
samples per class:

RECORDS = 20000
records = []
for x in range(0, RECORDS):
    records.append(record(dog_sample(), dog_class()))
    records.append(record(condor_sample(), condor_class()))
    records.append(record(dolphin_sample(), dolphin_class()))
    records.append(record(dragon_sample(), dragon_class()))



Introduction to Neural Networks with OpenCV Chapter 10

[ 301 ]

Now, let's train the ANN. As we discussed at the start of this section, we will use6.
multiple training epochs. Each epoch is an iteration of a loop, as shown in the
following code:

EPOCHS = 10
for e in range(0, EPOCHS):
    print("epoch: %d" % e)
    for t, c in records:
        data = cv2.ml.TrainData_create(t, cv2.ml.ROW_SAMPLE, c)
        if animals_net.isTrained():
            animals_net.train(data, cv2.ml.ANN_MLP_UPDATE_WEIGHTS |
cv2.ml.ANN_MLP_NO_INPUT_SCALE | cv2.ml.ANN_MLP_NO_OUTPUT_SCALE)
        else:
            animals_net.train(data, cv2.ml.ANN_MLP_NO_INPUT_SCALE |
cv2.ml.ANN_MLP_NO_OUTPUT_SCALE)

For real-world problems with large and diverse training datasets, an ANN
can potentially benefit from hundreds of training epochs. For the best
results, you may wish to keep training and testing an ANN until you
reach convergence, which means that further epochs no longer produce a
noticeable improvement in the accuracy of the results.

Note that we must pass the cv2.ml.ANN_MLP_UPDATE_WEIGHTS flag to the
ANN's train function to update the previously trained model rather than
training a new model from scratch. This is a critical point to remember whenever
you are training a model incrementally, as we are doing here.

Having trained our ANN, we should test it. For each class, let's generate 100 new 7.
random samples, classify them using the ANN, and keep track of the number of
correct classifications:

TESTS = 100

dog_results = 0
for x in range(0, TESTS):
    clas = int(animals_net.predict(
        np.array([dog_sample()], np.float32))[0])
    print("class: %d" % clas)
    if clas == 0:
        dog_results += 1

condor_results = 0
for x in range(0, TESTS):
    clas = int(animals_net.predict(
        np.array([condor_sample()], np.float32))[0])
    print("class: %d" % clas)



Introduction to Neural Networks with OpenCV Chapter 10

[ 302 ]

    if clas == 1:
        condor_results += 1

dolphin_results = 0
for x in range(0, TESTS):
    clas = int(animals_net.predict(
        np.array([dolphin_sample()], np.float32))[0])
    print("class: %d" % clas)
    if clas == 2:
        dolphin_results += 1

dragon_results = 0
for x in range(0, TESTS):
    clas = int(animals_net.predict(
        np.array([dragon_sample()], np.float32))[0])
    print("class: %d" % clas)
    if clas == 3:
        dragon_results += 1

Finally, let's print the accuracy statistics:8.

print("dog accuracy: %.2f%%" % (100.0 * dog_results / TESTS))
print("condor accuracy: %.2f%%" % (100.0 * condor_results / TESTS))
print("dolphin accuracy: %.2f%%" % \
    (100.0 * dolphin_results / TESTS))
print("dragon accuracy: %.2f%%" % (100.0 * dragon_results / TESTS))

When we run the script, the preceding code block should produce the following output:

dog accuracy: 100.00%
condor accuracy: 100.00%
dolphin accuracy: 100.00%
dragon accuracy: 100.00%

Since we are dealing with random data, the results may vary each time you run the script.
Typically, the accuracy should be high or even perfect because we have set up a simple
classification problem with non-overlapping ranges of input data. (The range of random
weight values for a dog does not overlap with the range for a dragon, and so forth.)

You may wish to take some time to experiment with the following modifications (one at a
time) so that you can see how the ANN's accuracy is affected:

Change the number of training samples by modifying the value of the RECORDS
variable.
Change the number of training epochs by modifying the value of the EPOCHS
variable.



Introduction to Neural Networks with OpenCV Chapter 10

[ 303 ]

Make the ranges of input data partially overlapping by editing the parameters of
the uniform and randint function calls in our dog_sample, condor_sample,
dolphin_sample, and dragon_sample functions.

When you are ready, we will proceed with an example containing real-life image data.
With this, we will train an ANN to recognize handwritten digits.

Recognizing handwritten digits with an ANN
A handwritten digit is any of the 10 Arabic numerals (0 to 9), written manually with a pen
or pencil, as opposed to being printed by a machine. The appearance of handwritten digits
can vary significantly. Different people have different handwriting, and – with the possible
exception of a skilled calligrapher – a person does not produce identical digits every time
he or she writes. This variability means that the visual recognition of handwritten digits is a
non-trivial problem for machine learning. Indeed, students and researchers in machine
learning often test their skills and new algorithms by attempting to train an accurate
recognizer for handwritten digits. We will approach this challenge in the following manner:

Load data from a Python-friendly version of the MNIST database. This is a1.
widely used database containing images of handwritten digits.
Using the MNIST data, train an ANN in multiple epochs.2.
Load an image of a sheet of paper with many handwritten digits on it.3.
Based on contour analysis, detect the individual digits on the paper.4.
Use our ANN to classify the detected digits.5.
Review the results in order to determine the accuracy of our detector and our6.
ANN-based classifier.

Before we delve into the implementation, let's review some information about the MNIST
database.

Understanding the MNIST database of
handwritten digits
The MNIST database (or Modified National Institute of Standards and Technology
database) is publicly available at http://yann.lecun.com/exdb/mnist/. The database
includes a training set of 60,000 images of handwritten digits. Half of these were written by
employees of the United States Census Bureau, while the other half were written by high
school students in the United States.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


Introduction to Neural Networks with OpenCV Chapter 10

[ 304 ]

The database also includes a test set of 10,000 images, gathered from the same writers. All
the training and test images are in grayscale format, with dimensions of 28 x 28 pixels. The
digits are white (or shades of gray) on a black background. For example, here are three of
the MNIST training samples:

As an alternative to using MNIST, you could, of course, build a similar
database yourself. This would involve collecting a large number of images
of handwritten digits, converting the images into grayscale, cropping
them so that each image contains a single digit in a standardized position,
and scaling the images so that they are all the same size. You would also
need to label the images so that a program could read the correct
classification for the purpose of training and testing a classifier.

Many authors provide examples of how to use the MNIST database with various machine
learning libraries and algorithms – not just OpenCV and not just ANNs. Michael Nielsen,
the author of the free online book Neural Networks and Deep Learning, devotes a chapter to 
MNIST and ANNs here: http://neuralnetworksanddeeplearning.com/chap1.html. He
shows how to implement an ANN almost from scratch, using only NumPy, and this is
excellent reading if you want to deepen your understanding beyond the kind of high-level
functionality that OpenCV exposes. His code is freely available on GitHub at https://
github.com/mnielsen/neural-networks-and-deep-learning.

Nielsen provides a version of MNIST as a PKL.GZ (gzip-compressed Pickle) file, which can
be easily loaded into Python. For the purposes of our book's OpenCV sample, we (the
authors) have taken Nielsen's PKL.GZ version of MNIST, reorganized it for our purposes,
and placed it inside this book's GitHub repository at
chapter10/digits_data/mnist.pkl.gz.

Now that we know something about the MNIST database, let's consider what ANN
parameters are appropriate for this training set.

http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap1.html
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/mnielsen/neural-networks-and-deep-learning


Introduction to Neural Networks with OpenCV Chapter 10

[ 305 ]

Choosing training parameters for the MNIST
database
Each MNIST sample is an image containing 784 pixels (that is, 28 x 28 pixels). Thus, our
ANN's input layer will have 784 nodes. The output layer will have 10 nodes because there
are 10 classes of digits (0 to 9).

We are free to choose the values of other parameters, such as the number of nodes in the
hidden layer, the number of training samples to use, and the number of training epochs. As
usual, experimentation can help us find values that offer acceptable training time and
accuracy, without overfitting the model to the training data. Based on some
experimentation that the authors of this book have done, we will use 60 hidden nodes,
50,000 training samples, and 10 epochs. These parameters will be good enough for a
preliminary test, keeping the training time down to a few minutes (depending on the
processing power of your machine).

Implementing a module to train the ANN
Training an ANN based on MNIST is something you might want to do in future projects as
well. To make our code more reusable, we can write a Python module that is solely
dedicated to this training process. Then (in the next section, Implementing the main module),
we will import this training module into a main module, where we will implement our
demonstration of digit detection and classification.

Let's implement the training module in a file called digits_ann.py:

To begin, we will import the gzip and pickle modules from the Python1.
standard library. As usual, we will also import OpenCV and NumPy:

import gzip
import pickle

import cv2
import numpy as np

We will use the gzip and pickle modules to decompress and load the MNIST
data from the mnist.pkl.gz file. We briefly mentioned this file earlier, in the
Understanding the MNIST database of handwritten digits section. It contains the
MNIST data in nested tuples, in the following format:

((training_images, training_ids),
 (test_images, test_ids))



Introduction to Neural Networks with OpenCV Chapter 10

[ 306 ]

In turn, the elements of these tuples are in the following format:

training_images is a NumPy array of 60,000 images, where each
image is a vector of 784-pixel values (flattened from an original
shape of 28 x 28 pixels). The pixel values are floating-point
numbers in the range 0.0 (black) to 1.0 (white), inclusive.
training_ids is a NumPy array of 60,000 digit IDs, where each
ID is a number in the range 0 to 9, inclusive. training_ids[i]
corresponds to training_images[i].
test_images is a NumPy array of 10,000 images, where each
image is a vector of 784-pixel values (flattened from an original
shape of 28 x 28 pixels). The pixel values are floating-point
numbers in the range 0.0 (black) to 1.0 (white), inclusive.
test_ids is a NumPy array of 10,000 digit IDs, where each ID is a
number in the range 0 to 9, inclusive. test_ids[i] corresponds to
test_images[i].

Let's write the following helper function to decompress and load the contents of2.
mnist.pkl.gz:

def load_data():
    mnist = gzip.open('./digits_data/mnist.pkl.gz', 'rb')
    training_data, test_data = pickle.load(mnist)
    mnist.close()
    return (training_data, test_data)

Note that in the preceding code, training_data is a tuple, equivalent to
(training_images, training_ids), and test_data is also a tuple,
equivalent to (test_images, test_ids).

We must reformat the raw data in order to match the format that OpenCV3.
expects. Specifically, when we provide sample output to train the ANN, it must
be a vector with 10 elements (for 10 classes of digits), rather than a single digit ID.
For convenience, we will also apply Python's built-in zip function to reorganize
the data in such a way that we can iterate over matching pairs of input and
output vectors as tuples. Let's write the following helper function to reformat the
data:

def wrap_data():
    tr_d, te_d = load_data()
    training_inputs = tr_d[0]
    training_results = [vectorized_result(y) for y in tr_d[1]]



Introduction to Neural Networks with OpenCV Chapter 10

[ 307 ]

    training_data = zip(training_inputs, training_results)
    test_data = zip(te_d[0], te_d[1])
    return (training_data, test_data)

Note that the preceding code calls load_data and another helper function,4.
vectorized_result. The latter function converts an ID into a classification
vector, as follows:

def vectorized_result(j):
    e = np.zeros((10,), np.float32)
    e[j] = 1.0
    return e

For example, the ID 1 is converted into a NumPy array containing the values
[0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. 0.0]. This 10-element
array, as you may have guessed, corresponds to the ANN's output layer, and we
can use it as a sample of correct output when we train the ANN.

The preceding functions – load_data, wrap_data, and
vectorized_result – have been adapted from Nielsen's code for
loading his version of mnist.pkl.gz. For more information about
Nielsen's work, refer to the Understanding the MNIST database of
handwritten digits section of this chapter.

So far, we have written functions that load and reformat MNIST data. Now, let's5.
write a function that will create an untrained ANN:

def create_ann(hidden_nodes=60):
    ann = cv2.ml.ANN_MLP_create()
    ann.setLayerSizes(np.array([784, hidden_nodes, 10]))
    ann.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 0.6, 1.0)
    ann.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP, 0.1, 0.1)
    ann.setTermCriteria(
        (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS,
         100, 1.0))
    return ann

Note that we have hardcoded the sizes of the input and output layers, based on
the nature of the MNIST data. However, we have allowed the caller of this
function to specify the number of nodes in the hidden layer.

For further discussion of parameters, refer to the Choosing training
parameters for the MNIST database section of this chapter.



Introduction to Neural Networks with OpenCV Chapter 10

[ 308 ]

Now, we need a training function that allows the caller to specify the number of6.
MNIST training samples and the number of epochs. Much of the training
functionality should be familiar from our previous ANN samples, so let's look at
the implementation in its entirety and then discuss some details afterward:

def train(ann, samples=50000, epochs=10):

    tr, test = wrap_data()

    # Convert iterator to list so that we can iterate multiple
    # times in multiple epochs.
    tr = list(tr)

    for epoch in range(epochs):
        print("Completed %d/%d epochs" % (epoch, epochs))
        counter = 0
        for img in tr:
            if (counter > samples):
                break
            if (counter % 1000 == 0):
                print("Epoch %d: Trained on %d/%d samples" % \
                      (epoch, counter, samples))
            counter += 1
            sample, response = img
            data = cv2.ml.TrainData_create(
                np.array([sample], dtype=np.float32),
                cv2.ml.ROW_SAMPLE,
                np.array([response], dtype=np.float32))
            if ann.isTrained():
                ann.train(data, cv2.ml.ANN_MLP_UPDATE_WEIGHTS |
cv2.ml.ANN_MLP_NO_INPUT_SCALE | cv2.ml.ANN_MLP_NO_OUTPUT_SCALE)
            else:
                ann.train(data, cv2.ml.ANN_MLP_NO_INPUT_SCALE |
cv2.ml.ANN_MLP_NO_OUTPUT_SCALE)
    print("Completed all epochs!")

    return ann, test



Introduction to Neural Networks with OpenCV Chapter 10

[ 309 ]

Note that we load the data and then train the ANN incrementally by iterating
over a specified number of training epochs, with a specified number of samples in
each epoch. For every 1,000 training samples that we process, we print a message
about the progress of the training. Finally, we return both the trained ANN and
the MNIST test data. We could have just returned the ANN, but having the test
data on hand is useful in case we want to check the ANN's accuracy.

Of course, the purpose of a trained ANN is to make predictions, so we will7.
provide the following predict function in order to wrap the ANN's own
predict method:

def predict(ann, sample):
    if sample.shape != (784,):
        if sample.shape != (28, 28):
            sample = cv2.resize(sample, (28, 28),
                                interpolation=cv2.INTER_LINEAR)
        sample = sample.reshape(784,)
    return ann.predict(np.array([sample], dtype=np.float32))

This function takes a trained ANN and a sample image; it performs a minimal
amount of data sanitization by making sure the sample image is 28 x 28 and by
resizing it if it isn't. Then, it flattens the image data into a vector before giving it to
the ANN for classification.

That's all the ANN-related functionality we will need to support our demo application.
However, let's also implement a test function that measures a trained ANN's accuracy by
classifying a given set of test data, such as the MNIST test data. Here is the relevant code:

def test(ann, test_data):
    num_tests = 0
    num_correct = 0
    for img in test_data:
        num_tests += 1
        sample, correct_digit_class = img
        digit_class = predict(ann, sample)[0]
        if digit_class == correct_digit_class:
            num_correct += 1
    print('Accuracy: %.2f%%' % (100.0 * num_correct / num_tests))

Now, let's take a short detour and write a minimal test that leverages all the preceding code
and the MNIST dataset. After that, we will proceed to implement the main module of our 
demo application.



Introduction to Neural Networks with OpenCV Chapter 10

[ 310 ]

Implementing a minimal test module
Let's make another script, test_digits_ann.py, in order to test the functions from our
digits_ann module. The test script is quite trivial; here it is:

from digits_ann import create_ann, train, test

ann, test_data = train(create_ann())
test(ann, test_data)

Note that we haven't specified the number of hidden nodes, so create_ann will use its
default parameter value: 60 hidden nodes. Similarly, train will use its default parameter
values: 50,000 samples and 10 epochs.

When we run this script, it should print training and test information similar to the
following:

Completed 0/10 epochs
Epoch 0: Trained on 0/50000 samples
Epoch 0: Trained on 1000/50000 samples
... [more reports on progress of training] ...
Completed all epochs!
Accuracy: 95.39%

Here, we can see that the ANN achieved 95.39% accuracy when classifying the 10,000 test
samples in the MNIST dataset. This is an encouraging result, but let's see how well the
ANN can generalize. Can it accurately classify data from an entirely different source,
unrelated to MNIST? Our main application, which detects digits from our own image of a
sheet of paper, will provide this kind of challenge to the classifier.

Implementing the main module
Our demo's main script takes everything we have learned in this chapter about ANNs and
MNIST and combines it with some of the object detection techniques that we studied in
previous chapters. Thus, in many ways, this is a capstone project for us.



Introduction to Neural Networks with OpenCV Chapter 10

[ 311 ]

Let's implement the main script in a new file called detect_and_classify_digits.py:

To begin, we will import OpenCV, NumPy, and our digits_ann module:1.

import cv2
import numpy as np

import digits_ann

Now, let's write a couple of helper functions to analyze and adjust the bounding2.
rectangles of digits and other contours. As we have seen in previous chapters,
overlapping detections are a common problem. The following function, called
inside, will help us determine whether one bounding rectangle is entirely
contained inside another:

def inside(r1, r2):
    x1, y1, w1, h1 = r1
    x2, y2, w2, h2 = r2
    return (x1 > x2) and (y1 > y2) and (x1+w1 < x2+w2) and \
            (y1+h1 < y2+h2)

With the help of the inside function, we will be able to easily choose only the
outermost bounding rectangle for each digit. This is important because we do not
want our detector to miss any extremities of a digit; such a mistake in detection
could make the classifier's job impossible. For example, if we detected only the
bottom half of a digit, 8, the classifier might reasonably see this region as a 0.

To further ensure that the bounding rectangles meet the classifier's needs, we will
use another helper function, called wrap_digit, to convert a tightly-fitting
bounding rectangle into a square with padding around the digit. Remember that
the MNIST data contains 28 x 28 pixel square images of digits, so we must rescale
any region of interest to this size before we attempt to classify it with our MNIST-
trained ANN. By using a padded bounding square instead of a tightly-fitting
bounding rectangle, we ensure that skinny digits (such as a 1) and fat digits (such
as a 0) are not stretched differently.

Let's look at the implementation of wrap_digit in multiple stages. First, we3.
modify the rectangle's smaller dimension (be it width or height) so that it equals
the larger dimension, and we modify the rectangle's x or y position so that the
center remains unchanged:

def wrap_digit(rect, img_w, img_h):

    x, y, w, h = rect



Introduction to Neural Networks with OpenCV Chapter 10

[ 312 ]

    x_center = x + w//2
    y_center = y + h//2
    if (h > w):
        w = h
        x = x_center - (w//2)
    else:
        h = w
        y = y_center - (h//2)

Next, we add 5-pixel padding on all sides:4.

    padding = 5
    x -= padding
    y -= padding
    w += 2 * padding
    h += 2 * padding

At this point, our modified rectangle could possibly extend outside the image.

To avoid out of bounds problems, we crop the rectangle so that it lies entirely5.
within the image. This could leave us with non-square rectangles in these edge
cases, but this is an acceptable compromise; we would prefer to use a non-square
region of interest rather than having to entirely throw out a detected digit just
because it is at the edge of the image. Here is the code for bounds-checking and
cropping the rectangle:

    if x < 0:
        x = 0
    elif x > img_w:
        x = img_w

    if y < 0:
        y = 0
    elif y > img_h:
        y = img_h

    if x+w > img_w:
        w = img_w - x

    if y+h > img_h:
        h = img_h - y

Finally, we return the modified rectangle's coordinates:6.

    return x, y, w, h



Introduction to Neural Networks with OpenCV Chapter 10

[ 313 ]

This concludes the implementation of the wrap_digit helper function.

Now, let's proceed to the main part of the program. Here, we start by creating an7.
ANN and training it on MNIST data:

ann, test_data = digits_ann.train(
    digits_ann.create_ann(60), 50000, 10)

Note that we are using the create_ann and train functions from our
digits_ann module. As we mentioned earlier (in the Choosing parameters for the
MNIST database section), we are using 60 hidden nodes, 50,000 training samples,
and 10 epochs. Although these are the default parameter values for our functions,
we specify them here anyway so that they are easier to see and modify later, in
case we want to experiment with other values.

Now, let's load a test image that contains many handwritten digits on a white8.
sheet of paper:

img_path = "./digit_images/digits_0.jpg"
img = cv2.imread(img_path, cv2.IMREAD_COLOR)

We are using the following image of Joe Minichino's handwriting (but, of course,
you could substitute another image if you prefer):

Let's convert the image into grayscale and blur it in order to remove noise and9.
make the darkness of the ink more uniform:

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.GaussianBlur(gray, (7, 7), 0, gray)



Introduction to Neural Networks with OpenCV Chapter 10

[ 314 ]

Now that we have a smoothened grayscale image, we can apply a threshold and10.
some morphology operations to ensure that the numbers stand out from the
background and that the contours are relatively free of irregularities, which
might throw off the prediction. Here is the relevant code:

ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV)
erode_kernel = np.ones((2, 2), np.uint8)
thresh = cv2.erode(thresh, erode_kernel, thresh, iterations=2)

Note the threshold flag, cv2.THRESH_BINARY_INV, which is for an
inverse binary threshold. Since the samples in the MNIST database are
white on black (and not black on white), we turn the image into a black
background with white numbers. We use the thresholded image for both
detection and classification.

After the morphology operation, we need to separately detect each digit in the11.
picture. As a step toward this, first, we need to find the contours:

contours, hier = cv2.findContours(thresh, cv2.RETR_TREE,
                                  cv2.CHAIN_APPROX_SIMPLE)

Then, we iterate through the contours and find their bounding rectangles. We12.
discard any rectangles that we deem too large or too small to be digits. We also
discard any rectangles that are entirely contained in other rectangles. The
remaining rectangles are appended to a list of good rectangles, which (we
believe) contain individual digits. Let's look at the following code snippet:

rectangles = []

img_h, img_w = img.shape[:2]
img_area = img_w * img_h
for c in contours:

    a = cv2.contourArea(c)
    if a >= 0.98 * img_area or a <= 0.0001 * img_area:
        continue

    r = cv2.boundingRect(c)
    is_inside = False
    for q in rectangles:
        if inside(r, q):
            is_inside = True
            break
    if not is_inside:
        rectangles.append(r)



Introduction to Neural Networks with OpenCV Chapter 10

[ 315 ]

Now that we have a list of good rectangles, we can iterate through them, sanitize13.
them using our wrap_digit function, and classify the image data inside them:

for r in rectangles:
    x, y, w, h = wrap_digit(r, img_w, img_h)
    roi = thresh[y:y+h, x:x+w]
    digit_class = int(digits_ann.predict(ann, roi)[0])

Moreover, after classifying each digit, we draw the sanitized bounding rectangle14.
and the classification result:

    cv2.rectangle(img, (x,y), (x+w, y+h), (0, 255, 0), 2)
    cv2.putText(img, "%d" % digit_class, (x, y-5),
                cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)

After processing all the regions of interest, we save the thresholded image and15.
the fully annotated image and display them until the user hits any key to end the
program:

cv2.imwrite("detected_and_classified_digits_thresh.png", thresh)
cv2.imwrite("detected_and_classified_digits.png", img)
cv2.imshow("thresh", thresh)
cv2.imshow("detected and classified digits", img)
cv2.waitKey()

That is the end of the script. When running it, we should see the thresholded image as well
as a visualization of detection and classification results. (The two windows may overlap
initially, so you might need to move one to see the other.) Here is the thresholded image:



Introduction to Neural Networks with OpenCV Chapter 10

[ 316 ]

Here is the visualization of the results:

This image contains 110 sample digits: 10 digits in the single-digit numbers from 0 to 9,
plus 100 digits in the double-digit numbers from 10 to 59. Out of these 110 samples, the
bounds are correctly detected for 108 samples, meaning that the detector's accuracy is
98.18%. Then, out of these 108 correctly detected samples, the classification result is correct
for 80 samples, meaning that the ANN classifier's accuracy is 74.07%. This is a lot better
than a random classifier, which would correctly classify a digit only 10% of the time.

Thus, the ANN is evidently capable of learning to classify handwritten digits in general, not
just the ones in the MNIST training and test datasets. Let's consider some ways to improve
its learning.

Trying to improve the ANN's training
We could apply a number of potential improvements to the problem of training our ANN.
We have already mentioned some of these potential improvements, but let's review them
here:

You could experiment with the size of your training dataset, the number of
hidden nodes, and the number of epochs until you find a peak level of accuracy.
You could modify our digits_ann.create_ann function so that it supports
more than one hidden layer.



Introduction to Neural Networks with OpenCV Chapter 10

[ 317 ]

You could also try different activation functions. We have used
cv2.ml.ANN_MLP_SIGMOID_SYM, but it isn't the only option; the others include
cv2.ml.ANN_MLP_IDENTITY, cv2.ml.ANN_MLP_GAUSSIAN,
cv2.ml.ANN_MLP_RELU, and cv2.ml.ANN_MLP_LEAKYRELU.
Similarly, you could try different training methods. We have used
cv2.ml.ANN_MLP_BACKPROP. The other options include
cv2.ml.ANN_MLP_RPROP and cv2.ml.ANN_MLP_ANNEAL.

For more information about ANN-related parameters in OpenCV, refer to
the official documentation at https://docs.opencv.org/master/d0/dce/
classcv_1_1ml_1_1ANN__MLP.html.

Aside from experimenting with parameters, think carefully about your application
requirements. For example, where and by whom will your classifier be used? Not everyone
draws digits the same way. Indeed, people in different countries tend to draw numbers in
slightly different ways.

The MNIST database was compiled in the United States, where the digit 7 is handwritten
like the typewritten character 7. However, in Europe, the digit 7 is often handwritten with a
small horizontal line halfway through the diagonal portion of the number. This stroke was
introduced to help distinguish the handwritten digit 7 from the handwritten digit 1.

For a more detailed overview of regional handwriting variations, check
the Wikipedia article on the subject, which is a good introduction,
available at
https://en.wikipedia.org/wiki/Regional_handwriting_variation.

This variation means that an ANN trained on the MNIST database may be less accurate
when applied to the classification of European handwritten digits. To avoid such an
outcome, you may choose to create your own training dataset instead. In almost all
circumstances, it is preferable to utilize training data that belongs to the current application
domain.

Finally, remember that once you are happy with the accuracy of your classifier, you can
always save it and reload it later so that it can be utilized in applications without having to
train the ANN every time.

https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://docs.opencv.org/master/d0/dce/classcv_1_1ml_1_1ANN__MLP.html
https://en.wikipedia.org/wiki/Regional_handwriting_variation


Introduction to Neural Networks with OpenCV Chapter 10

[ 318 ]

The interface for this is just like the interface we saw in the Saving and loading a trained SVM
section, near the end of Chapter 7, Building Custom Object Detectors. Specifically, you can
use code such as the following to save a trained ANN to an XML file:

ann = cv2.ml.ANN_MLP_create()
data = cv2.ml.TrainData_create(
    training_samples, layout, training_responses)
ann.train(data)
ann.save('my_ann.xml')

Subsequently, you can reload the trained ANN using code such as the following:

ann = cv2.ml.ANN_MLP_create()
ann.load('my_ann.xml')

Now that we have learned how to create a reusable ANN for handwritten digit
classification, let's think about the use cases for such a classifier.

Finding other potential applications
The preceding demonstration is only the foundation of a handwriting recognition
application. You could readily extend the approach to videos and detect handwritten digits
in real-time, or you could train your ANN to recognize the entire alphabet for a full-blown
optical character recognition (OCR) system.

Detection and recognition of car registration plates would be another useful extension of
the lessons we have learned up to this point. The characters on registration plates have a
consistent appearance (at least, within a given country), and this should be a simplifying
factor in the OCR part of the problem.

You could also try applying ANNs to problems where we have previously used SVMs, or
vice versa. This way, you could see how their accuracy compares for different kinds of data.
Recall that in Chapter 7, Building Custom Object Detectors, we used SIFT descriptors as
inputs for SVMs. Likewise, ANNs are capable of handling high-level descriptors and not
just plain old pixel data.

As we have seen, the cv2.ml_ANN_MLP class is quite versatile, but in truth, it covers only a
small subset of the ways an ANN can be designed. Next, we will learn about OpenCV's
support for more complex deep neural networks (DNNs) that can be trained with a variety
of other frameworks.



Introduction to Neural Networks with OpenCV Chapter 10

[ 319 ]

Using DNNs from other frameworks in
OpenCV
OpenCV can load and use DNNs that have been trained in any of the following
frameworks:

Caffe (http://caffe.berkeleyvision.org/)

TensorFlow (https://www.tensorflow.org/)
Torch (http://torch.ch/)
Darknet (https://pjreddie.com/darknet/)
ONNX (https://onnx.ai/)
DLDT (https://github.com/opencv/dldt/)

The Deep Learning Deployment Toolkit (DLDT) is part of Intel's
OpenVINO Toolkit (https://software.intel.com/openvino-toolkit/)
for computer vision. DLDT provides tools for optimizing DNNs from
other frameworks and for converting them into a common format. A
collection of DLDT-compatible models is freely available in a repository
called the Open Model Zoo (https://github.com/opencv/open_model_
zoo/). DLDT, the Open Model Zoo, and OpenCV have some of the same
people on their development teams; all three of these projects are
sponsored by Intel.

These frameworks use various file formats to store trained DNNs. Several of these 
frameworks use a combination of a pair of file formats: a text file to describe the model's
parameters, plus a binary file to store the model itself. The following code snippet shows
the file types and OpenCV functions that are relevant to loading a model from each
framework:

caffe_model = cv2.dnn.readNetFromCaffe(
    'my_model_description.protext', 'my_model.caffemodel')

tensor_flow_model = cv2.dnn.readNetFromTensorflow(
    'my_model.pb', 'my_model_description.pbtxt')

# Some Torch models use the .t7 extension and others use
# the .net extension.
torch_model_0 = cv2.dnn.readNetFromTorch('my_model.t7')
torch_model_1 = cv2.dnn.readNetFromTorch('my_model.net')

darknet_model = cv2.dnn.readNetFromDarket(
    'my_model_description.cfg', 'my_model.weights')

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://torch.ch/
http://torch.ch/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://pjreddie.com/darknet/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://onnx.ai/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://github.com/opencv/dldt/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://software.intel.com/openvino-toolkit/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/
https://github.com/opencv/open_model_zoo/


Introduction to Neural Networks with OpenCV Chapter 10

[ 320 ]

onnx_model = cv2.dnn.readNetFromONNX('my_model.onnx')

dldt_model = cv2.dnn.readNetFromModelOptimizer(
    'my_model_description.xml', 'my_model.bin')

After we load a model, we need to preprocess the data we will use with the model. The
necessary preprocessing is specific to the way the given DNN was designed and trained, so
any time we use a third-party DNN, we must read about how that DNN was designed and
trained. OpenCV provides a function, cv2.dnn.blobFromImage, that can perform some
common preprocessing steps, depending on the parameters we pass to it. We can perform
other preprocessing steps manually before passing data to this function.

A neural network's input vector is sometimes called a tensor or blob –
hence the function's name, cv2.dnn.blobFromImage.

Let's proceed to a practical example where we'll see a third-party DNN in action.

Detecting and classifying objects with third-
party DNNs
For this demo, we are going to capture frames from a webcam in real-time and use a DNN
to detect and classify 20 kinds of objects that may be in any given frame. Yes, a single DNN 
can do all this in real-time on a typical laptop that a programmer might use!

Before delving into the code, let's introduce the DNN that we will use. It is a Caffe version
of a model called MobileNet-SSD, which uses a hybrid of a framework from Google called
MobileNet and another framework called Single Shot Detector (SSD) MultiBox. The latter
framework has a GitHub repository at https://github.com/weiliu89/caffe/tree/ssd/.
The training technique for the Caffe version of MobileNet-SSD is provided by a project on
GitHub at https://github.com/chuanqi305/MobileNet-SSD/. Copies of the following
MobileNet-SSD files can be found in this book's repository, in the
chapter10/objects_data folder:

MobileNetSSD_deploy.caffemodel: This is the model.
MobileNetSSD_deploy.prototxt: This is the text file that describes the
model's parameters.

https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/
https://github.com/chuanqi305/MobileNet-SSD/


Introduction to Neural Networks with OpenCV Chapter 10

[ 321 ]

This model's capabilities and proper usage will soon become clear as we progress through
our sample code:

As usual, we begin by importing OpenCV and NumPy:1.

import cv2
import numpy as np

We proceed to load the Caffe model with OpenCV in the same manner that we2.
described in the previous section:

model = cv2.dnn.readNetFromCaffe(
    'objects_data/MobileNetSSD_deploy.prototxt',
    'objects_data/MobileNetSSD_deploy.caffemodel')

We need to define some preprocessing parameters that are specific to this model.3.
It expects the input image to be 300 pixels high. Also, it expects the pixel values
in the image to be on a scale from -1.0 to 1.0. This means that, relative to the usual
scale from 0 to 255, it is necessary to subtract 127.5 and then divide by 127.5. We
define the parameters as follows:

blob_height = 300
color_scale = 1.0/127.5
average_color = (127.5, 127.5, 127.5)

We also define a confidence threshold, representing the minimum confidence4.
score that we require in order to accept a detection as a real object:

confidence_threshold = 0.5

The model supports 20 classes of objects, with IDs from 1 to 20 (not 0 to 19). The5.
labels for these classes can be defined as follows:

labels = ['airplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
    'car', 'cat', 'chair', 'cow', 'dining table', 'dog',
    'horse', 'motorbike', 'person', 'potted plant', 'sheep',
    'sofa', 'train', 'TV or monitor']

Later, when we use class IDs to look up labels in our list, we must
remember to subtract 1 from the ID in order to obtain an index in the
range 0 to 19 (not 1 to 20).

With the model and parameters at hand, we are ready to start capturing frames.



Introduction to Neural Networks with OpenCV Chapter 10

[ 322 ]

For each frame, we begin by calculating the aspect ratio. Remember that this6.
DNN expects the input to be based on an image that is 300 pixels high; however,
the width can vary in order to match the original aspect ratio. The following code
snippet shows how we capture a frame and calculate the appropriate input size:

cap = cv2.VideoCapture(0)

success, frame = cap.read()
while success:

    h, w = frame.shape[:2]
    aspect_ratio = w/h

    # Detect objects in the frame.

    blob_width = int(blob_height * aspect_ratio)
    blob_size = (blob_width, blob_height)

At this point, we can simply use the cv2.dnn.blobFromImage function, with7.
several of its optional arguments, to perform the necessary preprocessing,
including resizing the frame and converting its pixel data into a scale from -1.0 to
1.0:

    blob = cv2.dnn.blobFromImage(
        frame, scalefactor=color_scale, size=blob_size,
        mean=average_color)

We feed the resulting blob to the DNN and get the model's output:8.

    model.setInput(blob)
    results = model.forward()

The results are an array, in a format that is specific to the model we are using.

For this object detection DNN – and for other DNNs trained with the SSD9.
framework – the results include a subarray of detected objects, each with its own
confidence score, rectangle coordinates, and class ID. The following code shows
how to access these, as well as how to use an ID to look up a label in the list we
defined earlier:

    # Iterate over the detected objects.
    for object in results[0, 0]:
        confidence = object[2]
        if confidence > confidence_threshold:

            # Get the object's coordinates.



Introduction to Neural Networks with OpenCV Chapter 10

[ 323 ]

            x0, y0, x1, y1 = (object[3:7] * [w, h, w, h]).astype(int)

            # Get the classification result.
            id = int(object[1])
            label = labels[id - 1]

As we iterate over the detected objects, we draw the detection rectangles, along10.
with the classification labels and confidence scores:

            # Draw a blue rectangle around the object.
            cv2.rectangle(frame, (x0, y0), (x1, y1),
                          (255, 0, 0), 2)

            # Draw the classification result and confidence.
            text = '%s (%.1f%%)' % (label, confidence * 100.0)
            cv2.putText(frame, text, (x0, y0 - 20),
                cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2)

The last thing we do with the frame is show it. Then, if the user has hit the11.
Esc key, we exit; otherwise, we capture another frame and continue to the next
iteration of the loop:

    cv2.imshow('Objects', frame)

    k = cv2.waitKey(1)
    if k == 27: # Escape
        break

    success, frame = cap.read()

If you plug in a webcam and run the script, you should see a visualization of detection and
classification results, updated in real-time. Here is a screenshot showing Joseph Howse and
Sanibel Delphinium Andromeda (a mighty, great, and righteous cat) in their living room in
a Canadian fishing village:



Introduction to Neural Networks with OpenCV Chapter 10

[ 324 ]

The DNN has correctly detected and classified a human person (with 99.4% confidence), a
cat (85.4%), a decorative bottle (72.1%), part of a sofa (61.2%), and a woven picture of a boat
(52.0%). Evidently, this DNN is well equipped to classify the contents of living rooms in
nautical settings!

This is only a first taste of the things that DNNs can do – and do in real time! Next, let's see
what we can achieve by combining three DNNs in one application.

Detecting and classifying faces with third-
party DNNs
For this demonstration, we are going to use one DNN to detect faces and two other DNNs
to classify the age and gender of each detected face. Specifically, we will use pre-trained
Caffe models that are stored in the following files in the chapter10/faces_data folder of
this book's GitHub repository.



Introduction to Neural Networks with OpenCV Chapter 10

[ 325 ]

Here is an inventory of the files in this folder, and of the files' origins:

detection/res10_300x300_ssd_iter_140000.caffemodel: This is the
DNN for face detection. The OpenCV team has provided this file at https://
github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_
20170830/res10_300x300_ssd_iter_140000.caffemodel. This Caffe model was
trained with the SSD framework (https://github.com/weiliu89/caffe/tree/
ssd/). Thus, its topology is similar to the MobileNet-SSD model that we used in
the previous section's example.
detection/deploy.prototxt: This is the text file that describes the parameters
of the preceding DNN for face detection. The OpenCV team provides this file at
https://github.com/opencv/opencv/blob/master/samples/dnn/face_
detector/deploy.prototxt.

The chapter10/faces_data/age_gender_classification folder contains the
following files, which are all provided by Gil Levi and Tal Hassner in their GitHub
repository (https://github.com/GilLevi/AgeGenderDeepLearning/) and on their project
page (https://talhassner.github.io/home/publication/2015_CVPR) for their work on
age and gender classification:

age_net.caffemodel: This is the DNN for age classification.
age_net_deploy.protext: This is the text file that describes the parameters of
the preceding DNN for age classification.
gender_net.caffemodel: This is the DNN for gender classification.
gender_net_deploy.protext: This is the text file that describes the parameters
of the preceding DNN for age classification.
average_face.npy and average_face.png: These files represent the average
faces in the classifiers' training dataset. The original file from Levi and Hassner is
called mean.binaryproto, but we have converted it into a NumPy-readable
format and a standard image format, which are more convenient for our
purposes.

Let's see how we can use all these files in our code:

To begin the sample program, we load the face detection DNN, define its1.
parameters, and define a confidence threshold. We do this in much the same way
as we did for the object detection DNN in the previous section's sample:

import cv2
import numpy as np

https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/blob/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/weiliu89/caffe/tree/ssd/
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/opencv/opencv/blob/master/samples/dnn/face_detector/deploy.prototxt
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://github.com/GilLevi/AgeGenderDeepLearning/
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR
https://talhassner.github.io/home/publication/2015_CVPR


Introduction to Neural Networks with OpenCV Chapter 10

[ 326 ]

face_model = cv2.dnn.readNetFromCaffe(
    'faces_data/detection/deploy.prototxt',
'faces_data/detection/res10_300x300_ssd_iter_140000.caffemodel')
face_blob_height = 300
face_average_color = (104, 177, 123)
face_confidence_threshold = 0.995

We do not need to define labels for this DNN because it does not perform any
classification; it just predicts the coordinates of face rectangles.

Now, let's load the age classifier and define its class labels:2.

age_model = cv2.dnn.readNetFromCaffe(
    'faces_data/age_gender_classification/age_net_deploy.prototxt',
    'faces_data/age_gender_classification/age_net.caffemodel')
age_labels = ['0-2', '4-6', '8-12', '15-20',
              '25-32', '38-43', '48-53', '60+']

Note that in this model, the age labels have gaps between them. For example,
'0-2' is followed by '4-6'. Thus, if a person is actually 3 years old, the classifier
has no proper label for this case; at best, it can pick either of the neighboring
ranges, '0-2' or '4-6'. Presumably, the model's authors deliberately chose
disconnected ranges, in an effort to ensure that the classes are separable with
respect to the inputs. Let's consider the alternative. Based on data from facial
images, is it possible to separate a group of people who are 4 years old from a
group of people who are 4-years-less-a-day? Surely it isn't; they look the same.
Thus, it would be wrong to formulate a classification problem based on
contiguous age ranges. A DNN could be trained to predict age as a continuous
variable (such as a floating-point number of years), but this would be altogether
different than a classifier, which predicts confidence scores for various classes.

Now, let's load the gender classifier and define its labels:3.

gender_model = cv2.dnn.readNetFromCaffe(
'faces_data/age_gender_classification/gender_net_deploy.prototxt',
    'faces_data/age_gender_classification/gender_net.caffemodel')
gender_labels = ['male', 'female']



Introduction to Neural Networks with OpenCV Chapter 10

[ 327 ]

The age and gender classifiers use the same blob size and the same average.4.
Rather than using a single color as the average, they use an average facial image,
which we will load (as a NumPy array in floating-point format) from an NPY file.
Later, we will subtract this average facial image from an actual facial image
before we perform classification. Here are the definitions of the blob size and
average image:

age_gender_blob_size = (256, 256)
age_gender_average_image = np.load(
    'faces_data/age_gender_classification/average_face.npy')

If you want to see what the average face looks like, open the file at
chapter10/faces_data/age_gender_classification/average_face.png,
which contains the same data in a standard image format. Here it is:

Of course, this is only the average face for a particular training dataset; it is not
necessarily representative of the true average face in the world population, or in
any particular nation or community. Even so, here, we can see a face that is a
blurry composite of many faces, and it contains no obvious clues about age or
gender. Note that the image is square, it is centered around the tip of the nose,
and it extends vertically from the top of the forehead to the base of the neck. To
obtain accurate classification results, we should take care to apply this classifier to
facial images that are cropped in the same manner.

Having set up our models and their parameters, let's proceed to capture and5.
process frames from a camera. With each frame, we begin by creating a blob that
is the same aspect ratio as the frame, and we feed this blob to the face detection
DNN:

cap = cv2.VideoCapture(0)

success, frame = cap.read()
while success:



Introduction to Neural Networks with OpenCV Chapter 10

[ 328 ]

    h, w = frame.shape[:2]
    aspect_ratio = w/h

    # Detect faces in the frame.

    face_blob_width = int(face_blob_height * aspect_ratio)
    face_blob_size = (face_blob_width, face_blob_height)

    face_blob = cv2.dnn.blobFromImage(
        frame, size=face_blob_size, mean=face_average_color)

    face_model.setInput(face_blob)
    face_results = face_model.forward()

Like the object detector that we used in the previous section's sample, the face6.
detector provides confidence scores and rectangle coordinates as part of its
results. For each detected face, we need to check whether the confidence score is
acceptably high, and, if it is, we'll get the coordinates of the face rectangle:

    # Iterate over the detected faces.
    for face in face_results[0, 0]:
        face_confidence = face[2]
        if face_confidence > face_confidence_threshold:

            # Get the face coordinates.
            x0, y0, x1, y1 = (face[3:7] * [w, h, w, h]).astype(int)

This face detection DNN produces rectangles that are taller than they are wide.7.
However, the age and gender classification DNNs expect square faces. Let's
widen the detected face rectangle to make it a square:

            # Classify the age and gender of the face based on a
            # square region of interest that includes the neck.

            y1_roi = y0 + int(1.2*(y1-y0))
            x_margin = ((y1_roi-y0) - (x1-x0)) // 2
            x0_roi = x0 - x_margin
            x1_roi = x1 + x_margin
            if x0_roi < 0 or x1_roi > w or y0 < 0 or y1_roi > h:
                # The region of interest is partly outside the
                # frame. Skip this face.
                continue

Note that if part of the square falls outside the bounds of the image, we skip this
detection result and continue to the next one.



Introduction to Neural Networks with OpenCV Chapter 10

[ 329 ]

At this point, we can select the square region of interest (ROI), which contains8.
the image data that we will use for age and gender classification. We proceed by
scaling the ROI to the classifiers' blob size, converting it into floating-point
format, and subtracting the average face. From the resulting scaled and
normalized face, we create the blob:

            age_gender_roi = frame[y0:y1_roi, x0_roi:x1_roi]
            scaled_age_gender_roi = cv2.resize(
                age_gender_roi, age_gender_blob_size,
                interpolation=cv2.INTER_LINEAR).astype(np.float32)
            scaled_age_gender_roi[:] -= age_gender_average_image
            age_gender_blob = cv2.dnn.blobFromImage(
                scaled_age_gender_roi, size=age_gender_blob_size)

We feed the blob to the age classifier, pick the class ID with the highest 9.
confidence score, and then take note of the label and confidence score for this ID:

            age_model.setInput(age_gender_blob)
            age_results = age_model.forward()
            age_id = np.argmax(age_results)
            age_label = age_labels[age_id]
            age_confidence = age_results[0, age_id]

Similarly, we classify the gender:10.

            gender_model.setInput(age_gender_blob)
            gender_results = gender_model.forward()
            gender_id = np.argmax(gender_results)
            gender_label = gender_labels[gender_id]
            gender_confidence = gender_results[0, gender_id]

We draw a visualization of the detected face rectangle, the expanded square ROI,11.
and the classification results:

            # Draw a blue rectangle around the face.
            cv2.rectangle(frame, (x0, y0), (x1, y1),
                          (255, 0, 0), 2)

            # Draw a yellow square around the region of interest
            # for age and gender classification.
            cv2.rectangle(frame, (x0_roi, y0), (x1_roi, y1_roi),
                          (0, 255, 255), 2)

            # Draw the age and gender classification results.
            text = '%s years (%.1f%%), %s (%.1f%%)' % (
                age_label, age_confidence * 100.0,
                gender_label, gender_confidence * 100.0)



Introduction to Neural Networks with OpenCV Chapter 10

[ 330 ]

            cv2.putText(frame, text, (x0_roi, y0 - 20),
                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 2)

To conclude, we show the annotated frame, and we keep capturing more frames12.
until the user hits the Esc key:

cv2.imshow('Faces, age, and gender', frame)

k = cv2.waitKey(1)
if k == 27: # Escape
    break

success, frame = cap.read()

What does this program report about Joseph Howse? Let's take a look:

Without vanity, Joseph Howse is going to write a couple of paragraphs about this result.



Introduction to Neural Networks with OpenCV Chapter 10

[ 331 ]

First, let's consider the detection of the face and the selection of the ROI. The face has been
accurately detected. The ROI has been correctly expanded to a square region that includes
the neck – or, in this case, the full beard, which could be an important region for the
purposes of classifying age and gender.

Second, let's consider the classification. The truth is that Joseph Howse is male and is
approximately 35.8 years old at the time of this picture. Other human beings who see
Joseph Howse's face are able to judge with perfect confidence that he is male; however,
their estimates of his age vary widely. The gender classification DNN says with perfect
confidence (100.0%) that Joseph Howse is male. The age classification DNN says with high 
confidence (96.6%) that he is 25-32 years old. Perhaps it is tempting to take the midpoint of
this range, 28.5, and say that the prediction has an error of -7.3 years, which is subjectively a
big underestimate, being -20.4% of the true age. However, this type of assessment is a
stretch of the prediction's meaning.

Remember that this DNN is an age classifier, not a predictor of continuous age values, and
that the DNN's age classes are labeled as disconnected ranges; the next one after '25-32' is
'38-43'. Thus, the model has a gap around Joseph Howse's true age, but at least it
managed to choose one of the two classes that border this gap.

This demonstration concludes our introductory tour of ANNs and DNNs. Let's review
what we have learned and done.

Summary
This chapter scratched the surface of the vast and fascinating world of ANNs. We learned
about the structure of ANNs, and how to design a network topology based on application
requirements. Then, we focused on OpenCV's implementation of MLP ANNs, as well as on
OpenCV's support for diverse DNNs that have been trained in other frameworks.

We applied neural networks to real-world problems: notably, handwritten digit
recognition; object detection and classification; and a combination of face detection, age
classification, and gender classification in real time. We saw that even in these introductory
demos, neural networks show a lot of promise in terms of versatility, accuracy, and speed.
Hopefully, this encourages you to try out pre-trained models from various authors, and to
learn to train advanced models of your own in various frameworks.



Introduction to Neural Networks with OpenCV Chapter 10

[ 332 ]

With this thought, and with good wishes, we shall part for now.

This book's authors hope that you have enjoyed our journey together through the Python
bindings of OpenCV 4. Although covering all of OpenCV 4's functionality and all its
bindings would take a series of books, we have explored a broad selection of fascinating
and futuristic concepts, and we encourage you to get in touch with us, and with the
OpenCV community, to let us know about your next groundbreaking project in the field of
computer vision!



Appendix A: Bending Color
Space with the Curves Filter

Starting in Chapter 3, Processing Images with OpenCV, our Cameo demo application
incorporated an image processing effect called curves, which it uses to emulate the color
bias of certain photo films. This Appendix describes the concept of curves and their
implementation using SciPy.

Curves are a technique for remapping colors. With curves, a channel's value at a destination
pixel is a function of (only) the same channel's value at the source pixel. Moreover, we do
not define functions directly; instead, for each function, we define a set of control points
that the function must fit by means of interpolation. In pseudocode, for a BGR image, we
have the following:

dst.b = funcB(src.b) where funcB interpolates pointsB
dst.g = funcG(src.g) where funcG interpolates pointsG
dst.r = funcR(src.r) where funcR interpolates pointsR

This type of interpolation may vary between implementations, though it should avoid
discontinuous slopes at control points and, instead, produce curves. We will use cubic
spline interpolation whenever the number of control points is sufficient.

Let's start by taking a look at how interpolation can be implemented.



Appendix A: Bending Color Space with the Curves Filter

[ 334 ]

Formulating a curve
Our first step toward curve-based filters is to convert control points into a function. Most of
this work is done for us by a SciPy function called scipy.interp1d, which takes two
arrays (x and y coordinates) and returns a function that interpolates the points. As an
optional argument to scipy.interp1d, we may specify the kind interpolation; supported
options include 'linear', 'nearest', 'zero', 'slinear' (spherical linear),
'quadratic', and 'cubic'. Another optional argument, bounds_error, may be set to
False to permit extrapolation as well as interpolation.

Let's edit the utils.py script that we use with our Cameo demo and add a function that
wraps scipy.interp1d with a slightly simpler interface:

def createCurveFunc(points):
    """Return a function derived from control points."""
    if points is None:
        return None
    numPoints = len(points)
    if numPoints < 2:
        return None
    xs, ys = zip(*points)
    if numPoints < 3:
        kind = 'linear'
    elif numPoints < 4:
        kind = 'quadratic'
    else:
        kind = 'cubic'
    return scipy.interpolate.interp1d(xs, ys, kind,
                                      bounds_error = False)

Rather than two separate arrays of coordinates, our function takes an array of (x, y) pairs,
which is probably a more readable way of specifying control points. The array must be
ordered so that x increases from one index to the next. Typically, for natural-looking effects,
the y values should increase too, and the first and last control points should be (0, 0) and
(255, 255) in order to preserve black and white. Note that we will treat x as a channel's input
value and y as the corresponding output value. For example, (128, 160), would brighten a
channel's midtones.

Note that cubic interpolation requires at least four control points. If there are only three
control points, we fall back on quadratic interpolation, and if there are only two, we fall
back on linear interpolation. For natural-looking effects, these fallback cases should be
avoided.



Appendix A: Bending Color Space with the Curves Filter

[ 335 ]

Throughout the remainder of this chapter, we seek to use the curves generated by our
createCurveFunc function in an efficient and well-organized way.

Caching and applying a curve
By now, we can get the function of a curve that interpolates arbitrary control points.
However, this function might be expensive. We don't want to run it once-per-channel, per -
pixel (for example, 921,600 times per frame if applied to three channels of 640 x 480 video).
Fortunately, we are typically dealing with just 256 possible input values (in 8 bits per
channel) and we can cheaply precompute and store that many output values. Then, our
per-channel, per-pixel cost is just a lookup of the cached output value.

Let's edit the utils.py file and add a function that will create a lookup array for a given
function:

def createLookupArray(func, length=256):
    """Return a lookup for whole-number inputs to a function.

    The lookup values are clamped to [0, length - 1].

    """
    if func is None:
        return None
    lookupArray = numpy.empty(length)
    i = 0
    while i < length:
        func_i = func(i)
        lookupArray[i] = min(max(0, func_i), length - 1)
        i += 1
    return lookupArray

Let's also add a function that will apply a lookup array (such as the result of the preceding
function) to another array (such as an image):

def applyLookupArray(lookupArray, src, dst):
    """Map a source to a destination using a lookup."""
    if lookupArray is None:
        return
    dst[:] = lookupArray[src]



Appendix A: Bending Color Space with the Curves Filter

[ 336 ]

Note that the approach in createLookupArray is limited to input values that are whole
numbers (non-negative integers) since the input value is used as an index into an array. The
applyLookupArray function works by using a source array's values as indices into the
lookup array. Python's slice notation ([:]) is used to copy looked-up values into a
destination array.

Let's consider another optimization. What if we want to apply two or more curves in
succession? Performing multiple lookups is inefficient and may cause a loss in precision.
We can avoid these problems by combining two curve functions into one function before
creating a lookup array. Let's edit utils.py again and add the following function, which
returns a composite of two given functions:

def createCompositeFunc(func0, func1):
    """Return a composite of two functions."""
    if func0 is None:
        return func1
    if func1 is None:
        return func0
    return lambda x: func0(func1(x))

The approach in createCompositeFunc is limited to input functions that take a single
argument. The arguments must be of compatible types. Note the use of Python's lambda
keyword to create an anonymous function.

The following is a final optimization issue. What if we want to apply the same curve to all
the channels of an image? In this case, splitting and remerging channels is wasteful because
we don't need to distinguish between channels. We just need one-dimensional indexing, as
used by applyLookupArray. For this, we can use the numpy.ravel function,
which returns a one-dimensional interface to a preexisting, given array that may be multi-
dimensional. The return type is numpy.view, which has much the same interface as
numpy.array, except numpy.view only owns a reference to the data, not a copy.

NumPy arrays have a flatten method, but this returns a copy.



Appendix A: Bending Color Space with the Curves Filter

[ 337 ]

numpy.ravel works for images with any number of channels. Thus, it allows us to abstract
the difference between grayscale and color images in cases when we wish to treat all
channels the same.

Now that we have addressed several important optimization issues concerning the use of
curves, let's consider how to organize our code to provide a simple and reusable interface
to applications such as Cameo.

Designing object-oriented curve filters
Since we cache a lookup array for each curve, our curve-based filters have data associated
with them. Thus, we will implement them as classes, not just functions. Let's make a pair of
curve filter classes, along with some corresponding higher-level classes that can apply any
function, not just a curve function:

VFuncFilter: This is a class that is instantiated with a function, which it can
then apply to an image using apply. The function is applied to the V (value)
channel of a grayscale image or to all the channels of a color image.
VCurveFilter: This is a subclass of VFuncFilter. Instead of being instantiated
with a function, it is instantiated with a set of control points, which it uses
internally to create a curve function.
BGRFuncFilter: This is a class that is instantiated with up to four functions,
which it can then apply to a BGR image using apply. One of these functions is
applied to all the channels, while the other three functions are each applied to a
single channel. The overall function is applied first and then the per-channel
functions.
BGRCurveFilter: This is a subclass of BGRFuncFilter. Instead of being
instantiated with four functions, it is instantiated with four sets of control points,
which it uses internally to create curve functions.

Additionally, all these classes accept a constructor argument that is a numeric type, such as
numpy.uint8 for 8 bits per channel. This type is used to determine how many entries
should be in the lookup array. The numeric type should be an integer type, and the lookup
array will cover the range from 0 to the type's maximum value (inclusive).



Appendix A: Bending Color Space with the Curves Filter

[ 338 ]

First, let's look at the implementations of VFuncFilter and VCurveFilter, which can
both be added to filters.py:

class VFuncFilter(object):
    """A filter that applies a function to V (or all of BGR)."""

    def __init__(self, vFunc=None, dtype=numpy.uint8):
        length = numpy.iinfo(dtype).max + 1
        self._vLookupArray = utils.createLookupArray(vFunc, length)

    def apply(self, src, dst):
        """Apply the filter with a BGR or gray source/destination."""
        srcFlatView = numpy.ravel(src)
        dstFlatView = numpy.ravel(dst)
        utils.applyLookupArray(self._vLookupArray, srcFlatView,
                               dstFlatView)

class VCurveFilter(VFuncFilter):
    """A filter that applies a curve to V (or all of BGR)."""

    def __init__(self, vPoints, dtype=numpy.uint8):
        VFuncFilter.__init__(self, utils.createCurveFunc(vPoints),
                             dtype)

Here, we are internalizing the use of several of our previous functions:
utils.createCurveFunc, utils.createLookupArray, and
utils.applyLookupArray. We are also using numpy.iinfo to determine the relevant
range of lookup values, based on the given numeric type.

Now, let's look at the implementations of BGRFuncFilter and BGRCurveFilter, which
can both be added to filters.py as well:

class BGRFuncFilter(object):
    """A filter that applies different functions to each of BGR."""

    def __init__(self, vFunc=None, bFunc=None, gFunc=None,
                 rFunc=None, dtype=numpy.uint8):
        length = numpy.iinfo(dtype).max + 1
        self._bLookupArray = utils.createLookupArray(
            utils.createCompositeFunc(bFunc, vFunc), length)
        self._gLookupArray = utils.createLookupArray(
            utils.createCompositeFunc(gFunc, vFunc), length)
        self._rLookupArray = utils.createLookupArray(
            utils.createCompositeFunc(rFunc, vFunc), length)

    def apply(self, src, dst):
        """Apply the filter with a BGR source/destination."""



Appendix A: Bending Color Space with the Curves Filter

[ 339 ]

        b, g, r = cv2.split(src)
        utils.applyLookupArray(self._bLookupArray, b, b)
        utils.applyLookupArray(self._gLookupArray, g, g)
        utils.applyLookupArray(self._rLookupArray, r, r)
        cv2.merge([b, g, r], dst)

class BGRCurveFilter(BGRFuncFilter):
    """A filter that applies different curves to each of BGR."""

    def __init__(self, vPoints=None, bPoints=None,
                 gPoints=None, rPoints=None, dtype=numpy.uint8):
        BGRFuncFilter.__init__(self,
                               utils.createCurveFunc(vPoints),
                               utils.createCurveFunc(bPoints),
                               utils.createCurveFunc(gPoints),
                               utils.createCurveFunc(rPoints), dtype)

Again, we are internalizing the use of several of our previous functions:
utils.createCurvFunc, utils.createCompositeFunc, utils.createLookupArray,
and utils.applyLookupArray. We are also using numpy.iinfo, cv2.split, and
cv2.merge.

These four classes can be used as-is, with custom functions or control points being passed
as arguments at instantiation. Alternatively, we can make further subclasses that hard-code
certain functions or control points. Such subclasses can be instantiated without any
arguments.

Now, let's look at some examples of subclasses.

Emulating photo films
A common use of curves is to emulate palettes that were common in pre-digital
photography. Every type of photo film has its own unique rendition of color (or gray), but
we can generalize some of the differences from digital sensors. Film tends to suffer a loss of
detail and saturation in shadows, whereas digital tends to suffer these failings in highlights.
Also, film tends to have uneven saturation across different parts of the spectrum, so each
film has certain colors that pop or jump out.

Thus, when we think of good-looking film photos, we might think of scenes (or renditions)
that are bright and that have certain dominant colors. At the other extreme, maybe we
remember the murky look of an underexposed roll of film that couldn't be improved much
by the efforts of the lab technician.



Appendix A: Bending Color Space with the Curves Filter

[ 340 ]

In this section, we are going to create four different film-like filters using curves. They are
inspired by three kinds of film and a processing technique:

Kodak Portra, a family of films that is optimized for portraits and weddings.
Fuji Provia, a family of general-purpose films.
Fuji Velvia, a family of films that is optimized for landscapes.
Cross-processing, a nonstandard film processing technique, sometimes used to
produce a grungy look in fashion and band photography.

Each film emulation effect is implemented as a very simple subclass of BGRCurveFilter.
Here, we simply override the constructor to specify a set of control points for each channel.
The choice of control points is based on recommendations by photographer Petteri Sulonen.
See his article on film-like curves at http://www.prime-junta.net/pont/How_to/100_
Curves_and_Films/_Curves_and_films.html for more information.

The Portra, Provia, and Velvia effects should produce normal-looking images. These effects
should not be obvious except in before-and-after comparisons.

Let's examine the implementation of each of the four film emulation filters, starting with
the Portra filter.

Emulating Kodak Portra
Portra has a broad highlight range that tends toward warm (amber) colors, while shadows
are cooler (blue). As a portrait film, it tends to make people's complexions fairer. Also, it
exaggerates certain common clothing colors, such as milky white (for example, a wedding
dress) and dark blue (for example, a suit or jeans). Let's add this implementation of a Portra
filter to filters.py:

class BGRPortraCurveFilter(BGRCurveFilter):
    """A filter that applies Portra-like curves to BGR."""

    def __init__(self, dtype=numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            vPoints = [(0,0),(23,20),(157,173),(255,255)],
            bPoints = [(0,0),(41,46),(231,228),(255,255)],
            gPoints = [(0,0),(52,47),(189,196),(255,255)],
            rPoints = [(0,0),(69,69),(213,218),(255,255)],
            dtype = dtype)

Moving from Kodak to Fuji, we'll emulate Provia next.

http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html
http://www.prime-junta.net/pont/How_to/100_Curves_and_Films/_Curves_and_films.html


Appendix A: Bending Color Space with the Curves Filter

[ 341 ]

Emulating Fuji Provia
Provia has a strong contrast and is slightly cool (blue) throughout most tones. Sky, water,
and shade are enhanced more than the sun. Let's add this implementation of a Provia filter
to filters.py:

class BGRProviaCurveFilter(BGRCurveFilter):
    """A filter that applies Provia-like curves to BGR."""

    def __init__(self, dtype=numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            bPoints = [(0,0),(35,25),(205,227),(255,255)],
            gPoints = [(0,0),(27,21),(196,207),(255,255)],
            rPoints = [(0,0),(59,54),(202,210),(255,255)],
            dtype = dtype)

Next up is our Fuji Velvia filter.

Emulating Fuji Velvia
Velvia has deep shadows and vivid colors. It can often produce azure skies in daytime and
crimson clouds at sunset. This effect is difficult to emulate, but here is an attempt that we
can add to filters.py:

class BGRVelviaCurveFilter(BGRCurveFilter):
    """A filter that applies Velvia-like curves to BGR."""

    def __init__(self, dtype=numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            vPoints = [(0,0),(128,118),(221,215),(255,255)],
            bPoints = [(0,0),(25,21),(122,153),(165,206),(255,255)],
            gPoints = [(0,0),(25,21),(95,102),(181,208),(255,255)],
            rPoints = [(0,0),(41,28),(183,209),(255,255)],
            dtype = dtype)

Now, let's go for the cross-processed look!



Appendix A: Bending Color Space with the Curves Filter

[ 342 ]

Emulating cross-processing
Cross-processing produces a strong blue or greenish-blue tint in shadows and a strong
yellow or greenish-yellow in highlights. Black and white are not necessarily preserved.
Also, the contrast is very high. Cross-processed photos take on a sickly appearance. People
look jaundiced, while inanimate objects look stained. Let's edit filters.py and add the
following implementation of a cross-processing filter:

class BGRCrossProcessCurveFilter(BGRCurveFilter):
    """A filter that applies cross-process-like curves to BGR."""

    def __init__(self, dtype=numpy.uint8):
        BGRCurveFilter.__init__(
            self,
            bPoints = [(0,20),(255,235)],
            gPoints = [(0,0),(56,39),(208,226),(255,255)],
            rPoints = [(0,0),(56,22),(211,255),(255,255)],
            dtype = dtype)

Now that we have looked at a few examples of how to implement film emulation filters,
we'll wrap up this Appendix so that you can return to the main implementation of the
Cameo application in Chapter 3, Processing Images with OpenCV.

Summary
Building on the scipy.interp1d function, we have implemented a collection of curve
filters that are efficient (due to the use of lookup arrays) and easily extensible (due to an
object-oriented design). Our work has included special-purpose curve filters that can make
digital images look more like film shots. These filters can be readily integrated into an
application such as Cameo, as demonstrated by the use of our Portra film emulation filter
in Chapter 3, Processing Images with OpenCV.



Other Book You May Enjoy
If you enjoyed this book, you may be interested in this other book by Packt:

Hands-On Computer Vision with TensorFlow 2
Benjamin Planche, Eliot Andres

ISBN: 978-1-78883-064-5

Create your own neural networks from scratch
Classify images with modern architectures including Inception and ResNet
Detect and segment objects in images with YOLO, Mask R-CNN, and U-Net
Tackle problems faced when developing self-driving cars and facial emotion
recognition systems
Boost your application’s performance with transfer learning, GANs, and domain
adaptation
Use recurrent neural networks (RNNs) for video analysis
Optimize and deploy your networks on mobile devices and in the browser

https://www.packtpub.com/application-development/hands-computer-vision-tensorflow-2


Other Book You May Enjoy

[ 344 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

1
10-bit images
   converting, to 8-bit  85, 86, 87

3
3D image tracking  245, 247, 248
3D tracking  245
3D tracking algorithm
   about  287
   approaches  286
   improving  286
3D translation  245

6
6 degrees of freedom (6DOF) tracking  245

A
additive models  55
ANN classifier
   training, in multiple epochs  298, 299, 301
ANN's training
   improving  316, 318
ANN-related parameters
   reference link  317
application
   modifying  64, 65, 66, 88, 91
array slicing  33
artificial neural networks (ANNs)
   about  288, 290
   module implementation, for training  305, 307,

308, 309
   training, in OpenCV  295, 296, 297, 298
   used, for recognizing handwritten digits  303
ASCII keycodes
   reference link  39
augmented reality (AR)  245, 247, 248

B
background subtraction
   about  202
   GMG background subtractor, using  214, 216
   implementing  204, 205, 206, 207
   KNN background subtractor, using  212, 213,

214

   limitations  202
   MOG background subtractor, using  208, 209,

210, 211, 212
   other background subtractor  214
   used, for detecting moving objects  202, 203
bag of visual words (BoVW)  179
bag-of-words (BoW)
   about  179, 180
   applying, to computer vision  180, 181
barrel distortion  252
Binary Robust Independent Elementary Features

(BRIEF)  145
blob  135
blue-green-red (BGR)  27, 54, 219
bounding box  69, 70, 71, 72
BRIEF keypoint descriptor
   ORB, using  143, 144
brute-force  146
brute-force matching  145, 146

C
Caffe
   reference link  319
cameo.Cameo
   applying with  49, 51
Cameo
   about  42
   cameo.Cameo, used for applying  49, 51
   used, for face tracking  41



[ 346 ]

   used, for image manipulation  41
   video stream, abstracting with

managers.CaptureManager  42, 43, 45, 48
   window and keyboard, abstracting with

managers.WindowManager  48, 49
Camera Calibration
   reference link  253
camera frames
   capturing  36, 37, 38
   displaying, in windows  39, 40, 41
camera matrix  250
camera parameters  248, 250, 251, 252, 253
Canny
   used, for edge detection  66, 67, 68
car detector
   training  181, 182, 183, 184, 185, 186, 187,

188, 189
Carl Vondrick's MIT
   reference link  170
circles
   detecting  75, 77, 78
clustering  181
CMake configuration flags, OpenCV
   reference link  17
codebook  179
color histogram
   about  217
   back-projecting  219, 220, 222
   calculating  219, 220, 222
   cv2.calcBackProject, parameters  223
   cv2.calcHist, parameters  222
color models
   images, converting between  54
colorful objects
   tracking, with CamShift  217, 218
   tracking, with MeanShift  217, 218
confidence score  119
Continuously Adaptive MeanShift (CamShift)
   about  226
   used, for tracking colorful objects  217, 218
   using  227, 228
contour detection
   about  68, 69
   bounding box  69, 70, 71, 72
   convex contours  73

   Douglas-Peucker algorithm  73, 74
   minimum area rectangle  69, 70, 71, 72
   minimum enclosing circle  69, 70, 71, 72
convergence  218
convex contours  73, 74
convolution matrix  62
corners  135
count criterion  225
custom kernels  62, 63, 64
cv2.calcBackProject
   parameters  223
cv2.calcHist
   parameters  222
cv2.solvePnPRansac function
   about  253, 256
   arguments  255
   return values  254

D
Darknet
   reference link  319
Debian
   Python, installing on  17, 18
Deep Learning Deployment Toolkit (DLDT)
   reference link  319
deep neural networks (DNNs)
   about  288, 293, 318
   using, from other frameworks in OpenCV  319
demo application
   2D-to-3D spatial conversions, performing  258,

259, 260
   executing  281, 283, 284, 285
   grayscale conversion, performing  257, 258
   ImageTrackingDemo class, implementing  260
   implementing  256
   modules, importing  256
   testing  281, 283, 284, 285
depth camera
   about  91
   frames, capturing from  82, 84
depth estimation
   with normal camera  91, 92, 93, 95, 96, 97
depth map  82
Difference of Gaussian (DoG)  139, 185
discrete Fourier transform (DFT)  55



[ 347 ]

discriminant  292
disparity map
   about  82
   mask, crating  87
   mask, creating  88
Distinctive Image Features, from Scale-Invariant

Keypoints
   reference link  151
distortion coefficients
   about  252
   radical distortion  252
   tangential distortion  252
DoG features
   detecting  138, 139, 140
Douglas-Peucker algorithm  73, 74
DPEx
   about  220
   reference link  220

E
edge detection
   about  60, 61, 62
   with Canny  66, 67, 68
Eigenfaces
   about  118
   used, for performing face recognition  121, 122,

123

epipolar geometry  92
epsilon criterion  225
error  292

F
face detection, on still image
   performing, with OpenCV  110, 111
face detection, on video
   performing, with OpenCV  112, 114, 115
face detection
   performing, with OpenCV  109
face recognition, algorithms
   Eigenfaces  118
   Fisherfaces  118
   Local Binary Pattern  118
   Principal Component Analysis (PCA)  118
face recognition
   about  118, 119

   data, generating  116, 117, 118
   performing  116
   performing, with Eigenfaces  121, 122, 123
   performing, with Fisherfaces  123
   results based, discarding based on confidence

score  124, 125
   training data, loading  119, 120, 121
   with LBPH  124
faces swapping
   application's loop, modifying  126, 127, 128, 129
   copy operation, masking  129, 130, 131
   in Near-Infrared (NIR) camera  125
faces, with third-party DNNs
   classifying  324, 325, 327, 329, 331
   detecting  324, 325, 327, 329, 331
fast Fourier transform (FFT) package  55
Fast Hessian features
   detecting  141, 142
FAST keypoint detector
   ORB, using  143, 144
Fast Library for Approximate Nearest Neighbors

(FLANN)  153
   about  153, 155, 156, 157, 158, 183
   reference link  153
feature detection
   defining  135
   types  134
feature matching, methods
   Brute-force matching  135
   FLANN-based matching  135
feature matching
   types  134
features  107
Features from Accelerated Segment Test (FAST) 

144, 145
field of view (FOV)  249
Fisherfaces
   about  118
   used, for performing face recognition  123
FLANN-based matches
   used, for performing homography  158, 159,

160, 161
focal distance  248
focal length  248
focal plane  248



[ 348 ]

foreground detection
   GrabCut algorithm, using  98, 99, 100, 102
Fourier Transform
   exploring  55, 56
   high-pass filter (HPF)  56, 57, 58, 59, 60
   low-pass filter (LPF)  56, 57, 58, 59, 60
frames per second (FPS)  261

G
Gaussian Mixture Model (GMM)  98
generator function
   reference link  194
get() method
   reference link  37
Global Minimum with a Guarantee (GMG)  216
GMG background subtractor
   using  214, 216
GrabCut  98
GrabCut algorithm
   used, for foreground detection  98, 99, 100, 102
grayscale  54

H
Haar cascade data
   obtaining  108, 109
Haar cascades
   conceptualizing  107, 108
handwritten digits
   MNIST database  303
   recognizing, with ANN  303
Harris corner detection algorithm  135, 136, 137
high-pass filter (HPF)  56, 57, 58, 59, 60
histogram back-projection  219
HOG descriptors
   about  169, 170
   used, for detecting people  175, 176, 178
   used, to describe image  172
   visualizing  170, 171, 172
HOGgles (HOG goggles)  170
Homebrew
   using, with custom packages  17
   using, with ready-made packages  15, 16
homography
   performing, with FLANN-based matches  158,

159, 160, 161

hue-saturation-value (HSV)  54, 219

I
I/O scripts  26
IEEE
   reference link  218
image data
   accessing, with numpy.array  32, 33, 34
image file
   reading  26, 27, 28, 29
   writing  26, 27, 28, 29
image plane  248
image pyramid  108
image sensor  249
image
   and raw bytes, converting between  29, 30, 31,

32

   converting, between different color models  54
   displaying, in window  38
   segmenting, with Watershed algorithm  102, 103,

104, 105
ImageTrackingDemo class, methods
   __init__ method  261, 263, 264, 265, 266, 268
   _apply_kalman method  278, 279, 280
   _init_kalman_transition_matrix method  274, 275
   run method  269
   track_object method  270, 271, 273
ImageTrackingDemo class
   implementing  260
infrared (IR)  83

J
Jacobian matrix  279

K
k-means clustering  181
k-nearest neighbors (KNN)
   about  150
   used, for filtering matches  149, 151, 152, 153
Kalman filter
   mouse cursor, tracking  230, 231, 233
   post-correction state matrices  274
   pre-correction state matrices  274
   predict phases  229
   transition matrix  274



[ 349 ]

   update phases  229
   used, for finding trends in motion  228, 229
kernel  56
kernel density tree (kd-tree)  156
keyboard
   abstracting, with managers.WindowManager  48,

49

keypoint
   anatomy  141
   properties  141
KNN background subtractor
   using  212, 213, 214

L
lens  248
lens parameters  248, 250, 251, 252, 253
lines
   detecting  76, 77
Linux Mint
   Python, installing on  17, 18
Local Binary Pattern  118
local binary pattern histogram (LBPH)
   about  118, 170
   used, for performing face recognition  124
logo
   matching, in images  146, 148, 149
low-pass filter (LPF)  56, 57, 58, 59, 60

M
macOS
   Python, installing on  15
MacPorts  15
magnitude spectrum
   exploring  56
main module
   implementing  310, 312, 313, 314, 315, 316
managers.CaptureManager
   used, for abstracting video  42, 44, 46, 48
managers.WindowManager
   used, for abstracting window and keyboard  48
mask
   creating, from disparity map  87, 88
MeanShift
   example, implementing  224, 225, 226
   sample, planning  218, 219

   used, for tracking colorful objects  217, 218
minimal test module
   implementing  310
minimum area rectangle  69, 70, 71, 72
minimum enclosing circle  69, 70, 71, 72
MNIST database
   of handwritten digits  303
   training parameters, selecting  305
MobileNet  320
Modified National Institute of Standards and

Technology (MNIST)
   reference link  303, 304
modules
   creating  60, 81
MOG background subtractor
   using  208, 209, 210, 211, 212
mouse cursor
   tracking  230, 231, 233
moving objects
   detecting, with background subtraction  202, 203
multi-layer perceptron (MLP)  289, 292, 295
multihead camera  38
mustache distortion  252

N
name mangling  45
near infrared (NIR)  83
Near-Infrared (NIR) camera
   faces swapping  125
neural network
   about  293
   hidden layer  293
   hidden layer size, selecting  294
   input layer  293
   input layer size, selecting  294
   layers  293
   output layer  293
   output layer size, selecting  294
neurons  291, 292
nodes  291
non-maximum suppression (NMS)
   about  67, 173
   approach  173
normal camera
   used, for depth estimation  91, 92, 93, 95, 96, 97



[ 350 ]

NummSquared 2006a0
   reference link  234
NummSquared, formal methods
   reference link  234
NumPy  7
numpy.array
   used, for accessing image data  32, 33

O
object detector
   bag-of-words (BoW)  179, 180
   BoW, applying to computer vision  180, 181
   creating  178
   training  178
object-oriented
   versus functional paradigms  234, 235
objects, with third-party DNNs
   classifying  320, 321, 322
   detecting  320, 321, 322
Ogg Vorbis option  36
ONNX
   reference link  319
Open Model Zoo
   reference link  319
Open Source Computer Vision (OpenCV)
   about  7
   ANN, training  295, 296, 297, 298
   building, from source  11, 12, 14, 19, 20
   DNNs, using from other frameworks  319
   parameters  97
   URL  8, 23
   used, for performing face detection  109
   used, for performing face detection on still image 

110, 111
   used, for performing face detection on video  112
OpenCV 4
   enhancements  9
OpenCV's documentation
   finding  23, 24
OpenCV's help
   finding  23, 24
OpenCV's updates
   finding  23, 24
OpenCV
   used, for performing face detection on video 

114, 115
OpenNI 2
   about  7
   URL  11
optical center  248
optical character recognition (OCR)  318
Oriented FAST and Rotated BRIEF (ORB)
   about  134, 169
   used, with BRIEF keypoint descriptor  143, 144
   used, with FAST keypoint detector  143, 144
overfitting  295

P
pedestrian
   application flow, planning  233
   class, implementing  236, 237, 238
   examples  242
   main function, implementing  238, 239, 240,

241, 242
   object-oriented, versus functional paradigms 

234, 235
   tracking  233
perceptron  292
Perspective-n-Point (PnP)  253
pincushion distortion  252
pip  10
pixel-equivalent units  250
point cloud map  82
preceding
   convex contours  74
predict phases  229
Principal Component Analysis (PCA)  118
priori  291
Python
   about  23
   installing, on Debian  17, 18
   installing, on Linux Mint  17, 18
   installing, on macOS  15
   installing, on Ubuntu  17, 18
   installing, on Unix-like systems  21
   installing, on Windows  10
   setup tools, selecting  9, 10
   setup tools, using  9, 10
   URL  10



[ 351 ]

R
radial distortion  252
ratio test
   about  151
   used, for filtering matches  149, 151, 152, 153
raw bytes
   and image, converting between  29, 30, 31, 32
ready-made OpenCV package
   using  11, 18
red-green-blue (RGB)  28, 54
region of interest (ROI)  33, 68, 129, 194, 329
regional handwriting variation
   reference link  317
reinforcement learning  291
reprojection error  254
ridge  135
Rodrigues rotation vector  246

S
samples scripts
   executing  22, 23
scale-invariant  108
scale-invariant feature transform (SIFT)  139, 169
SciPy  7
semiglobal block matching  93
shapes
   detecting  75, 78
SIFT descriptors
   extracting  138, 139, 140
Single Shot Detector (SSD) MultiBox  320
speeded-up robust features (SURF)  169
Stanford Cars Dataset
   reference link  182
statistical model  290
stereo imaging  80
stereo vision  92
structure from motion (SfM)  80
subclass  88
subject  248
supervised learning  290
support vector machine (SVM)  174, 175, 242
SURF descriptors
   extracting  141, 142
SVM classifier

   car detection, training  191, 192, 193, 194, 196,
197, 198, 199

   combining, with sliding window  190
   loading  199
   saving  199

T
tangential distortion  252
tattoo forensics
   about  162
   image descriptors, saving to file  162, 163, 164
   matches, scanning  164, 165
TensorFlow
   reference link  319
Torch
   reference link  319

U
Ubuntu
   Python, installing on  17, 18
UIUC dataset
   download link  182
UIUC Image Database, for Car Detection
   reference link  182
units  291
Unix-like systems
   Python, installing on  21
unsupervised learning  291
update phases  229

V
valid depth mask  82
Variante Ascari chicane  139
venv
   reference link  10
video file
   reading  34, 36
   writing  34, 36
Video for Linux (V4L)  19
video stream
   abstracting, with managers.CaptureManager  42,

43, 45, 47



W
Watershed algorithm
   about  102
   used, for image segmentation  102, 103, 104,

105

window size  108
window
   abstracting, with managers.WindowManager  48,

49

   camera frames, displaying  39, 40, 41
   image, displaying  38
Windows
   Python, installing on  10

Z
zoom lens  250


	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting Up OpenCV
	Technical requirements
	What's new in OpenCV 4
	Choosing and using the right setup tools
	Installation on Windows
	Using a ready-made OpenCV package
	Building OpenCV from source

	Installation on macOS
	Using Homebrew with ready-made packages
	Using Homebrew with your own custom packages

	Installation on Debian, Ubuntu, Linux Mint, and similar systems
	Using a ready-made OpenCV package
	Building OpenCV from source

	Installation on other Unix-like systems

	Running samples
	Finding documentation, help, and updates
	Summary

	Chapter 2: Handling Files, Cameras, and GUIs
	Technical requirements
	Basic I/O scripts
	Reading/writing an image file
	Converting between an image and raw bytes
	Accessing image data with numpy.array
	Reading/writing a video file
	Capturing camera frames
	Displaying an image in a window
	Displaying camera frames in a window

	Project Cameo (face tracking and image manipulation)
	Cameo – an object-oriented design
	Abstracting a video stream with managers.CaptureManager
	Abstracting a window and keyboard with managers.WindowManager
	Applying everything with cameo.Cameo

	Summary

	Chapter 3: Processing Images with OpenCV
	Technical requirements
	Converting images between different color models
	Light is not paint 

	Exploring the Fourier transform
	HPFs and LPFs

	Creating modules
	Edge detection
	Custom kernels – getting convoluted
	Modifying the application
	Edge detection with Canny
	Contour detection
	Bounding box, minimum area rectangle, and minimum enclosing circle
	Convex contours and the Douglas-Peucker algorithm

	Detecting lines, circles, and other shapes
	Detecting lines
	Detecting circles
	Detecting other shapes

	Summary

	Chapter 4: Depth Estimation and Segmentation
	Technical requirements
	Creating modules
	Capturing frames from a depth camera
	Converting 10-bit images to 8-bit
	Creating a mask from a disparity map
	Modifying the application
	Depth estimation with a normal camera
	Foreground detection with the GrabCut algorithm
	Image segmentation with the Watershed algorithm
	Summary

	Chapter 5: Detecting and Recognizing Faces
	Technical requirements
	Conceptualizing Haar cascades
	Getting Haar cascade data
	Using OpenCV to perform face detection
	Performing face detection on a still image
	Performing face detection on a video
	Performing face recognition
	Generating the data for face recognition
	Recognizing faces
	Loading the training data for face recognition
	Performing face recognition with Eigenfaces
	Performing face recognition with Fisherfaces
	Performing face recognition with LBPH
	Discarding results based on the confidence score


	Swapping faces in the infrared
	Modifying the application's loop
	Masking a copy operation

	Summary

	Chapter 6: Retrieving Images and Searching Using Image Descriptors
	Technical requirements
	Understanding types of feature detection and matching
	Defining features

	Detecting Harris corners
	Detecting DoG features and extracting SIFT descriptors
	Anatomy of a keypoint

	Detecting Fast Hessian features and extracting SURF descriptors
	Using ORB with FAST features and BRIEF descriptors
	FAST
	BRIEF
	Brute-force matching
	Matching a logo in two images

	Filtering matches using K-Nearest Neighbors and the ratio test
	Matching with FLANN
	Performing homography with FLANN-based matches
	A sample application – tattoo forensics
	Saving image descriptors to file
	Scanning for matches

	Summary

	Chapter 7: Building Custom Object Detectors
	Technical requirements
	Understanding HOG descriptors
	Visualizing HOG
	Using HOG to describe regions of an image

	Understanding NMS
	Understanding SVMs
	Detecting people with HOG descriptors
	Creating and training an object detector
	Understanding BoW
	Applying BoW to computer vision
	k-means clustering


	Detecting cars
	Combining an SVM with a sliding window
	Detecting a car in a scene
	Saving and loading a trained SVM


	Summary

	Chapter 8: Tracking Objects
	Technical requirements
	Detecting moving objects with background subtraction
	Implementing a basic background subtractor
	Using a MOG background subtractor
	Using a KNN background subtractor
	Using GMG and other background subtractors

	Tracking colorful objects using MeanShift and CamShift
	Planning our MeanShift sample
	Calculating and back-projecting color histograms
	Understanding the parameters of cv2.calcHist
	Understanding the parameters of cv2.calcBackProject

	Implementing the MeanShift example
	Using CamShift

	Finding trends in motion using the Kalman filter
	Understanding the predict and update phases
	Tracking a mouse cursor

	Tracking pedestrians
	Planning the flow of the application
	Comparing the object-oriented and functional paradigms
	Implementing the Pedestrian class
	Implementing the main function
	Considering the next steps

	Summary

	Chapter 9: Camera Models and Augmented Reality
	Technical requirements
	Understanding 3D image tracking and augmented reality
	Understanding camera and lens parameters
	Understanding cv2.solvePnPRansac

	Implementing the demo application
	Importing modules
	Performing grayscale conversion
	Performing 2D-to-3D spatial conversions
	Implementing the application class
	Initializing the tracker
	Implementing the main loop
	Tracking the image in 3D
	Initializing and applying the Kalman filter
	Drawing the tracking results and masking the tracked object

	Running and testing the application

	Improving the 3D tracking algorithm
	Summary

	Chapter 10: Introduction to Neural Networks with OpenCV
	Technical requirements
	Understanding ANNs
	Understanding neurons and perceptrons
	Understanding the layers of a neural network
	Choosing the size of the input layer
	Choosing the size of the output layer
	Choosing the size of the hidden layer


	Training a basic ANN in OpenCV
	Training an ANN classifier in multiple epochs
	Recognizing handwritten digits with an ANN
	Understanding the MNIST database of handwritten digits
	Choosing training parameters for the MNIST database
	Implementing a module to train the ANN
	Implementing a minimal test module
	Implementing the main module
	Trying to improve the ANN's training
	Finding other potential applications

	Using DNNs from other frameworks in OpenCV
	Detecting and classifying objects with third-party DNNs
	Detecting and classifying faces with third-party DNNs
	Summary

	Appendix A: Bending Color Space with the Curves Filter
	Other Book You May Enjoy
	Index

